Decision Support Systems for Water Resources Management

"Decision Support Systems (DSS) are a specific class of computerized information system that supports business and organizational decision-making activities. A properly designed DSS is an interactive software-based system intended to help decision-makers compile useful information from raw data, documents, personal knowledge, and/or business models to identify and solve problems and make decisions. 

During the last years, several Decision Support Systems (DSS) have been developed for water resources management, in which sophisticated computerized systems integrate watershed processes at different spatial and temporal scales, simulation models and decision-making approaches. These tools have been developed for a variety of purposes such as prevention of water shortages (droughts), extreme event (flooding) and water-related pollution accidents." (Teodosiu et al., 2009)
 

Sources

Teodosiu, C., Ardeleanu, C., and Lupu, L. "An overview of decision support systems for integrated water resources management". Environmental Engineering and Management Journal, 8, (2009): 153-162. 10.30638/eemj.2009.023. 

Related Content

Article

Interview with Ioana Popescu, Associate Professor of Hydroinformatics at IHE Delft Institute for Water Education

Please describe how your professional (and/or personal) experience relates to space technologies and their applications to water resources management.

I am an expert in hydroinformatics, mainly involved in research projects and research supervision of MSc and PhD students. My research focusses on physically based models for inland waters (rivers and lakes). One of the major fields where modelling is used in water resources is flooding. In order to have adequate representation of floods, most models require large amounts of data, both for model building and model usage.

Interview with Ioana Popescu, Associate Professor of Hydroinformatics at IHE Delft Institute for Water Education

Please describe how your professional (and/or personal) experience relates to space technologies and their applications to water resources management.

I am an expert in hydroinformatics, mainly involved in research projects and research supervision of MSc and PhD students. My research focusses on physically based models for inland waters (rivers and lakes). One of the major fields where modelling is used in water resources is flooding. In order to have adequate representation of floods, most models require large amounts of data, both for model building and model usage.

Stakeholder

The United Nations University Institute on Comparative Regional Integration Studies (UNU-CRIS)

The United Nations University Institute on Comparative Regional Integration Studies (UNU-CRIS) is a research and training institute of the United Nations University. UNU is a global network of institutes and programs engaged in research and capacity development to support the universal goals of the UN. It brings together leading scholars from around the world with a view to generate strong and innovative knowledge on how to tackle pressing global problems. UNU-CRIS focuses on the study of processes of global cooperation and regional integration and their implications.

Person

Photo of Ioana Popescu

Ioana Popescu

Associate Professor of Hydroinformatics IHE Delft Institute for Water Education

Ioana Popescu is currently Associate Professor of Hydroinformatics at IHE Delft Institute for Water Education in Delft, The Netherlands. Her research focuses on computational methods, aspects of flood modeling and vulnerability related to floods, lake and reservoir modeling and water supply systems modeling and optimisation. She is particularly interested in integrating mathematical models into decision support systems. Data is key in model development, hence she explores all sources of data, from EO to in situ data and is for the FAIR data sharing.

Photo of Ioana Popescu

Ioana Popescu

Associate Professor of Hydroinformatics IHE Delft Institute for Water Education

Ioana Popescu is currently Associate Professor of Hydroinformatics at IHE Delft Institute for Water Education in Delft, The Netherlands. Her research focuses on computational methods, aspects of flood modeling and vulnerability related to floods, lake and reservoir modeling and water supply systems modeling and optimisation. She is particularly interested in integrating mathematical models into decision support systems. Data is key in model development, hence she explores all sources of data, from EO to in situ data and is for the FAIR data sharing.