Clean, accessible water for all is an essential part of the world we want to live in. There is sufficient fresh water on the planet to achieve this. But due to bad economics or poor infrastructure, every year millions of people, most of them children, die from diseases associated with inadequate water supply, sanitation and hygiene.
Water scarcity, poor water quality and inadequate sanitation negatively impact food security, livelihood choices and educational opportunities for poor families across the world. Drought afflicts some of the world’s poorest countries, worsening hunger and malnutrition.
By 2050, at least one in four people is likely to live in a country affected by chronic or recurring shortages of fresh water.
Facts and Figures
2.6 billion people have gained access to improved drinking water sources since 1990, but 663 million people are still without
At least 1.8 billion people globally use a source of drinking water that is fecally contaminated
Between 1990 and 2015, the proportion of the global population using an improved drinking water source has increased from 76 per cent to 91 per cent
But water scarcity affects more than 40 per cent of the global population and is projected to rise. Over 1.7 billion people are currently living in river basins where water use exceeds recharge
2.4 billion people lack access to basic sanitation services, such as toilets or latrines
More than 80 per cent of wastewater resulting from human activities is discharged into rivers or sea without any pollution removal
Each day,nearly 1,000 children die due to preventable water and sanitation-related diarrhoeal diseases
Hydropower is the most important and widely-used renewable source of energy and as of 2011, represented 16 per cent of total electricity production worldwide
Approximately 70 per cent of all water abstracted from rivers, lakes and aquifers is used for irrigation
Floods and other water-related disasters account for 70 per cent of all deaths related to natural disasters
Space-based technologies for SDG 6
Water conservation and management are among the most critical issues facing humankind.Space technology can help analyse global water cycles, map water courses, and monitor and mitigate the effects of floods and droughts. Since 2008, UNOOSA, together with the Prince Sultan bin Abdulaziz International Prize for Water, organizes conferences on the use of space technology for water management and this web portal is among the results of this cooperation.
Egline Tauya has focussed her career on natural resource management, after growing up in a rural area and learning to value such resources from a young age. Her work has been based in Africa and has included the use space technologies to map flood risks and vulnerable areas around the Zambezi and Limpopo River basins. Egline develops Environmental Outlooks as part of her work, which are reports that provide an integrated assessment of the state and trends of key environmental resources, such as freshwater, forest, and wildlife. Egline strongly believes in the integration of indigenous knowledges into water resource management and the crucial, but currently limited use of remote sensing in groundwater monitoring.
In this interview, we discuss how time-series of satellite data can be used to monitor the environmental, and more specifically the water domain, using the data cube technology.
Prof. Larson’s career has been focussed on using the Global Positioning System, and more recently using GPS to measure hydrological parameters, such as water levels in lakes, rivers, and the ocean, soil water content, and the depth of snow. To innovate, she Emerita believes a willingness to be different is key. She feels strongly about bringing space technologies closer to people by communicating better the important role that space technologies play and by making measurements from satellites easier for people to access.
Prof. Susanne Scheier’s interest in water diplomacy, conflict and cooperation came from a long passion for water and the environment due to a love of the outdoors and being close to rivers and mountains as a teenager. She now uses her passion in her work, identifying and responding to challenges around shared water resources. She uses space technologies in her work with the Water, Peace and Security (WSP) partnership to identify hotspots of potential water-related conflicts early on and to raise political awareness with policy-makers.
How do you personally and professionally relate to water?
Growing up in Israel, water scarcity was a constant backdrop to my childhood. The arid climate and frequent droughts shaped my relationship with water from an early age. One vivid memory that remains stamped in my mind is the series of TV campaigns highlighting the importance of water conservation. I recall sitting in front of the television, concerned by the urgency conveyed in those campaigns. The images of dry landscapes and the emphasis on every drop of water as precious left a lasting impression.
Prof. Hesham El-Askary works at Chapman University in the Earth Systems Science Data Solutions (ESsDs) lab. Here, he supervises students on the use of satellite earth observations for topics including agriculture, water resources, air quality and climate action, and makes use of Artificial Intelligence (AI) and Machine Learning (ML). Prof. El-Askary is researching natural and anthropogenic pollution’s influence on the environment and is particularly interested in the concept of “glocal” impact—how what’s happening globally in terms of climate affects us locally. He believes that one of the biggest challenges in implementing sustainable water management is the lack of data to monitor progress, and advocates for space technologies to mitigates this shortage.
The following interview with Dr. Sherine Ahmed El Baradei is focusing on water quality and its relation to space technology. Water is the essence of life. Thus preservation of water quality is of a big concern to human health and to fauna and flora in water bodies. The interview explains what is water quality and what are water quality parameters of water bodies. Furthermore, the importance of using space technologies and applications in contributing to water quality monitoring and determination of hydraulic and hydrologic conditions is thoroughly discussed. For example, temporal resolution of satellites and their role in obtaining accurate imaging and data is clarified and the satellites concerned with water quality monitoring are pointed out. Considering the important role of groundwater in arid regions, the use of GRACE Mission data in Egypt is mentioned. Moreover, key influences on water quality in Egypt are discussed and the relation of water quality to water scarcity in the country and ways to preserve water quality is being discussed. Furthermore, the potential of space-based monitoring used to address water issues from hydrological to water resources issues in the country or region is pointed out. The challenges of the use of space technology for hydrology and water-related topics in the MENA region is also discussed. Light is shed on the project done by NASA to recycle astronauts’ waste into energy and power. Sustainability is of a great importance to or communities, and thus it is discussed how sustainable it is to build cities in the desert, or to divert water to where people are instead of moving people to existing water sources. Finally, a discussion about ways we can employ to improve awareness and capacity building on the use of space technology for water and challenges in this field are discussed.
In this insightful interview, Prof. Lakshmi shares how space technologies are transforming our understanding of Earth’s water systems. Using satellite sensors that detect visible, infrared, microwave, thermal, and gravity data, he studies key variables like soil moisture, precipitation, and vegetation to track water movement across the planet.
As President of the American Geophysical Union’s Hydrology Section—home to nearly 10,000 global members—he helps coordinate scientific committees, awards, and one of the largest gatherings of Earth scientists at the AGU Annual Meeting.
One of his many standout projects involves downscaling soil moisture data from NASA’s SMAP satellite. By integrating data from MODIS and VIIRS instruments, his team has refined soil moisture resolution from 9 km to as fine as 400 meters—which is critical for applications in agriculture, weather forecasting, and climate science.
Looking ahead, he emphasizes the urgent need for efficient water use in agriculture, which consumes 70 per cent of global freshwater. He advocates for innovation and smarter water management, especially in the face of population growth and climate extremes.
His advice to young professionals? Dive into water science—it’s at the heart of global challenges like droughts, floods, and wildfires. And when asked what drives innovation, his answer is simple: motivated young minds.
Ailin Sol Ortone Lois is a Remote Sensing specialist at Remote Sensing Center of the Argentinian Air Force, where she applies space technologies to monitor Natural Areas of the Defense. She is the Director of Synthetic Aperture Radar Research Group at the National University of Technology (UTN), where she leads a project related to glacier monitoring and mass balance calculations using free open remote sensing sources. Ailin also teaches physics at UTN and geomatics at the National University of Luján, in Buenos Aires.
Dr. Pietro Campana studied environmental engineering with a focus on fluid dynamics, hydrology, and water resource management, before undertaking a PhD on solar irrigation systems. He is working on the water-food-energy nexus and is currently evaluating the first agrivoltaic system (a photovoltaic system that allows the combination of both electricity production and crop production on the same land to increase the land use efficiency) in Sweden. He constantly strives to work on something that can make a difference to people’s lives and finds developing tools and services that can solve water issues very exciting. He believes that to address the nexus challenges, we need novel technologies and more research and development funding.
Simonetta di Pippo, Director of UNOOSA, has experience in the space sector for around 40 years. She has been involved in some very instrumental missions, from those which helped to discover water on Mars, to landing on and exploring a comet, to those that helped sustain human life on the ISS. Her aspiration in life is to have a profession that allows her to work and learn at the same time, with her current career affording her this dream. Curiosity and diversity are both crucial in her opinion for innovation and it is her personal and professional goal to encourage more women to pursue STEM education and careers.
You are currently a Senior Fellow and Cluster Coordinator: Nature, Climate, and Health at UNU – CRIS, can you elaborate on your role, and how it relates to water?
The world faces big problems like climate change, water shortages, and health issues. At UNU CRIS, our Nature, Climate, and Health Cluster studies how these problems are linked. We see that climate change makes things like water and food scarce, which hurts people's health. Our research shows how climate change affects water, food, and health security.
Basuti Gerty Bolo dreamt of space science and of becoming an astronaut when she was only 8 years old. She then wanted to be a pilot, before studying space applications and space and atmospheric science. Her curiosity for space science was sparked by an interest in knowing more about unexplained mysteries of things happening in space, such as the cause of some plane crashes. Basuti works exceptionally hard to disseminate space knowledge. She is an Endowed Chair for Educational Technologies at Africa University in Zimbabwe, a UNOOSA Space for Women Network mentor, and is starting a space for women and girls network called Space4Women_AfricaDreamers to spread space awareness and promote gender equality.
Mr Stuart Crane, has been program coordinator at the United Nations Environment Program and its Center for Water and Environment since 2017. Mr Crane has experience in international intergovernmental organizations since 2009 and dedicated large parts of his career to working on environmental issues such as energy, climate change and water. His professional background is in Environmental Quality and resource management, and he received his post graduate degree in International Development. On behalf of UNEP, he coordinates a global SDG 6 fresh water program that supports 193 countries with progressing towards SDG. 6 targets on improving the water governance, ecosystem management and reducing freshwater pollution.
Prof. Rita Colwell’s career has been dedicated to providing safe water to rural communities, with a focus on cholera, after studying marine microbiology. Through her work, she and her team developed a model that employs satellite sensing to monitor the environmental factors associated with cholera. Prof. Colwell is also Director of the National Science Foundation and is a proponent of an educated society and increasing the number of women and minorities in STEM. For her, the most exciting aspect of her current work is assisting countries such as Yemen in predicting the risk of cholera outbreaks, however she believes one challenge that remains is the poor understanding of how effective the use of satellite sensos are for predicting the risk of such water borne diseases.
Could you describe your professional career and/or personal experiences related to space technology and water? Where does your interest in those sectors come from?
I started my research career in 2013, with research interests revolving around various environmental concerns that were deeply rooted in water related issues of Pakistan. Having an educational background in Space Science, it was quite intuitive to possess understanding of the very high potential of applicability of Geospatial technologies in the water sector.
Please describe how your professional (and/or personal) experience relates to space technologies and their applications to water resources management.
I am an expert in hydroinformatics, mainly involved in research projects and research supervision of MSc and PhD students. My research focusses on physically based models for inland waters (rivers and lakes). One of the major fields where modelling is used in water resources is flooding. In order to have adequate representation of floods, most models require large amounts of data, both for model building and model usage.
Dr. Nivin Hasan discusses her pioneering work in space technology and water resource management, emphasising the role of remote sensing and geographic information systems (GIS) in addressing climate challenges in Jordan and the Middle East and North Africa (MENA) region. She highlights her research on drought assessment in the Amman-Zarqa Basin using satellite data and machine learning, underscoring the need for innovative solutions in arid zones. As a Technical Advisor at Royal Jordanian Geographic Centre (RJGC), she oversees projects integrating geospatial analysis for sustainable groundwater management and disaster resilience.
Her proudest achievements include leading Jordan’s first CANSAT project and receiving global recognition for empowering women in STEM. She identifies water scarcity, climate variability, and data gaps as critical challenges in arid regions and advocates for space-based monitoring systems to enhance mitigation strategies.
Dr. Hasan encourages young women to pursue space science, stressing mentorship and perseverance. She calls for interdisciplinary collaboration and funding to drive innovation in environmental monitoring. When asked about her favourite aggregate state of water, she humorously notes its irrelevance to her research but acknowledges the symbolic importance of liquid water for life in arid landscapes.
Epidemiological mapping has been used for centuries. To give an example, John Snow, the father of epidemiology, created a map to determine the cause of the 1845 cholera outbreak in London, United Kingdom. The mapping allowed him to discover contaminated water as the source of the outbreak.
Plusieurs projets en cours tentent de détecter la pollution plastique dans les océans en utilisant la technologie spatiale.
L’océan est où la vie a commencé. Il abrite la majorité des plantes et des animaux de la Terre. Cependant, il y a actuellement un autre habitant qui met en danger toutes les espèces vivantes sous et au-dessus de l’eau, les humains inclus. Cet habitant est appelé « plastique ». Le plus grand marché du plastique est celui des emballages destinés à l’élimination immédiate (Sigogneau-Russell, 2003).
A new water-treatment technology used by astronauts aboard the International Space Station has the potential to provide clean water to millions of people worldwide. By using proteins called aquaporins, this system mimics the natural filtering abilities of human kidneys and plant roots to purify and recycle wastewater. With an increasing global water demand especially in remote locations where clean drinking water is not easily accessible, this technology has the potential to provide a more resource-efficient method of water purification not only in space, but here on Earth as well.
Short summary:
Digital twin (DT) technology for water systems is currently blooming. How are DT applied in water systems and why did they become so popular? In this article, the framework of DT and crucial technologies to build them such as space-based satellites, modern communication technologies, artificial intelligence, etc. are revealed to present how DT functionality is implemented. Application scenarios of DT from global to regional are shown with typical examples for modeling the global water cycle, regional floods, and urban water supply systems. Though DT offers a valuable solution in the context of water systems, attention needs to be given to accuracy, interoperability and data security of DT. DT can be smart systems, helping in comprehensive analysis to support decision making.
Oil spills are a critical form of environmental pollution that have far-reaching negative impacts. They severely degrade marine ecosystems, introducing toxic chemicals into the oceans and harming sea life. They also have significant financial impacts through the diminishment of ecotourism as well as the killing of commercially viable species. Despite these negative impacts, oil spills are notoriously difficult to track and monitor given the general lack of surveillance over the vastness of the Earth’s oceans. Space-based technologies are evolving as a tool to aid in the detection of oil spills worldwide. Two primary technologies have been optimized for oil spill monitoring: optical satellite imagery and synthetic aperture radar (SAR). Optical satellite imagery functions somewhat like taking a photograph of the Earth’s surface and requires clear skies and daylight to produce imagery. SAR imagery, on the other hand, relies on microwaves to produce images, and therefore can function regardless of weather, as well as at night. The combination of these two technologies has allowed scientists an increased ability to monitor where and when oil pollution is happening, providing an eye-in-the-sky to survey marine activities. While these space-based technologies are aiding in the detection of a variety of oil spill incidents, they are particularly helpful to monitor the illegal dumping of oil and effluent from shipping vessels as ships are no longer able to dump oily bilgewater into the ocean under the veil of darkness. Unfortunately, the enforcement of environmental and marine law remains an issue and ships are rarely prosecuted. It will be important for space-based technologies to continue to evolve and provide evidence of marine pollution in the effort to provide protection for Earth’s marine ecosystems.
No hace mucho, en 1916, el explorador Padre De Agostini inspeccionó parte de la topografía de los glaciares Escondidos de la Patagonia (De Agostini, 1949). Hoy en día, la tecnología espacial, como las misiones ICESat de la NASA y los datos de la Shuttle Radar Topography Mission (SRTM), permiten seguir los cambios de los glaciares a lo largo del tiempo.
In recent years, with the rapid development of satellite-based Earth observation technologies, more and more quasi-global satellite products observe the Earth.
Since ancient times, people have established communities in river deltas because it provides water, fertile land, and transportation access, making them an ideal place to live. This pattern has been carried forward to the present. With nearly 6 billion people living in river deltas, they are one of the most densely populated places on Earth (Kuenzer and Renaud, 2011). However, they are facing threats such as climate change, sea level rise, land use changes, and ecosystem degradation.
Seriez-vous en mesure d´imaginer un groupe de jeunes femmes impliquées dans l´émancipation des femmes par le biais des technologies géospatiales ? Cela s´est passé du 10 au 13 juillet 2019 dans le premier rallye géospatial dédié aux femmes et aux aqueducs ruraux. Lors de cet évènement, trente femmes issues de contextes très différents se sont réunies avec le même objectif, construire un espace dédié à cette mission, sur le Campus de Nicoya (nord du Costa Rica) de l'Université du Costa Rica (UCR).
Embarking on a new kind of adventure, scientists are using small satellites called CubeSats to explore the mysteries of water on Earth. They can help us learn more about oceans, lakes, and rivers. Water sustains all forms of life but, for something so integral to our existence, we know little about its intricate dynamics. This is where the collaboration between space technology and water research comes into play.
In many communities around the world, water is a constant chore. The short supply and limited access to running water requires people to move places looking for resources, collecting them and bringing it home in gallons, buckets and large pans. And in many communities around Africa, women take this responsibility such as in the Samburu tribe in Kenya. For women of this tribe, this chore is a daily routine.
Water is an essential natural resource for human survival as well as the health of the entire ecosystem, including agriculture. It is fundamental for long-term sustainable growth of economies and societies globally and locally. Water resources, which cross political boundaries, are vital for both the environment and human populations. Transboundary water management refers to the cooperative process of managing shared water bodies across political boundaries, ensuring the equitable and sustainable use of water resources by riparian states (Bernauer & Böhmelt, 2020).
Data has become one of the most valuable resources of the 21st century. Indeed, data can be considered the most important input when it comes to make informed decisions. The recent global pandemic crisis highlighted the vital role of data for reporting accurate case numbers and outbreaks, identifying the most vulnerable demographics, and understanding the most effective vaccines, to mention few. Data also plays a key role when it comes to sustainability.
Groundwater accounts for 30% of Earth’s freshwater resources (Shiklomanov 1993) (Figure 1) and is estimated to globally provide 36% of potable water, 42% of irrigation water, and 24% of industrial water – indicating its significant value (Global Environment Facility 2021). Groundwater affords a host of benefits, from providing better protection against drought and microbiological contamination than surface waters, to being generally low cost and accessible to many users.
Plus la population augmente, plus la demande en eau augmente, notamment l'eau nécessaire aux usages domestiques, industriels et municipaux (Mogelgaard 2011). L'Inde en est un bon exemple : le 20 juin 2019, la ville de Chennai a failli manquer d'eau. Des images satellites ont montré l'ampleur de la pénurie d'eau dans la ville (schéma 1). Alors que les habitants faisaient la queue pour de l'eau stockée dans des camions-citernes qui la rendaient disponible dans la ville, le véritable défi de gestion concernait les bâtiments municipaux et les entreprises de la ville. La pénurie d´eau a gravement affecté la capacité des hôpitaux à soigner les patients et à nettoyer les équipements, et a contraint les entreprises à fermer leurs portes jusqu'à la fin de la crise.
The exacerbation of climate change-induced droughts, among other weather extremes, is escalating into a critical global challenge particularly in arid regions like the Southwestern U.S. where droughts pose grievous environmental and socio-economic threats. Increasingly frequent, intense, and enduring droughts are commonplace generally in Western U.S. inflicting damages on crops and aggravating record-breaking wildfires year after year. Drought is the second-most expensive natural disaster in the U.S. behind hurricanes, costing an average of $9.6 billion in damages per event.
Therefore, continuous innovation and deployment of cost-effective and time-efficient water resources monitoring tools could help mitigate severe environmental and socio-economic impacts of droughts which currently impact livestock and wildlife management in Southwest U.S. A recent innovation as a potential climate change adaptation solution is the Surface Water Identification and Forecasting Tool (SWIFT). The Google Earth Engine-based tool is a remote sensing-based technology that leverages optical imagery derived from Landsat 8 OLI and Sentinel-2 Multispectral Instrument (MSI), and radar imagery from Sentinel-1 C-Band Synthetic Aperture Radar (C-SAR) to monitor near real-time the availability of water in stock ponds and tanks. As drought conditions are expected to worsen with rising global temperatures, SWIFT is designed to provide a valuable and affordable stock water monitoring solution for cattle producers and land managers, etc.
Merci à Jean Francois Regis Adoupou d'avoir traduit cet article volontairement.
La cartographie épidémiologique est utilisée depuis des siècles. A titre illustratif, John Snow, le père de l'épidémiologie, a créé une carte pour déterminer la cause de l’éclosion de l'épidémie de choléra en 1845, à Londres, au Royaume-Uni. La cartographie lui a permis de découvrir que l'eau contaminée était à l’origine de l'épidémie.
Water scarcity is one of the greatest threats faced by humanity of our time – in 2019, more than two billion people experience high water stress (UN-Water 2019) and approximately four billion people suffer from severe water scarcity for at least one month per year (Mekonnen and Hoekstra 2016). This worsening problem increases the risk of international conflict over water resources breaking out, given that there are over 270 transboundary river basins, and three-quarters of UN Member States share at least one river or lake basin with a neighbour (UN News 2017).
Clean drinking water is a precious resource. It is the basis of our daily life and decides like no other substance about our health and well-being. It is therefore important to ensure that the water for everyday use meets the highest quality criteria. But what is meant by the term water quality and how can water quality be measured and compared? This question will be addressed and explained in more detail in the following sections.
Une nouvelle technologie de traitement de l'eau utilisée par les astronautes à bord de la Station spatiale internationale pourrait fournir de l'eau propre à des millions de personnes dans le monde. En utilisant des protéines appelées aquaporines, ce système imite les capacités naturelles de filtration des reins humains et des racines des plantes pour purifier et recycler les eaux usées. Face à la demande mondiale croissante en eau, en particulier dans les régions reculées où l'eau potable n'est pas facilement accessible, cette technologie pourrait constituer une méthode de purification de l'eau plus économe en ressources, non seulement dans l'espace, mais aussi sur Terre.
The term environmental flow (eflow) has recently become increasingly popular as concerns about the destruction of freshwater ecosystems and the impacts of development activities (i.e., urban development and energy production) on river have intensified. Eflow is defined as "the quantity, timing, and quality of water flows required to sustain freshwater and estuarine ecosystems, and the human livelihoods and well-being that depend on these ecosystems" (Brisbane Declaration 2007). Alternatively, eflow is described as the foundation of water security for achieving sustainable development. Managing eflow is relevant to meet the most targets of SDG 6, but especially SDG 6.4 on water use efficiency (6.4.2 level of water stress) and SDG target 6.6 on the protection of water-dependent ecosystems.
Oil spills are a critical form of environmental pollution that have far-reaching negative impacts. They severely degrade marine ecosystems, introducing toxic chemicals into the oceans and harming sea life. They also have significant financial impacts through the diminishment of ecotourism as well as the killing of commercially viable species. Despite these negative impacts, oil spills are notoriously difficult to track and monitor given the general lack of surveillance over the vastness of the Earth’s oceans. Space-based technologies are evolving as a tool to aid in the detection of oil spills worldwide. Two primary technologies have been optimized for oil spill monitoring: optical satellite imagery and synthetic aperture radar (SAR). Optical satellite imagery functions somewhat like taking a photograph of the Earth’s surface and requires clear skies and daylight to produce imagery. SAR imagery, on the other hand, relies on microwaves to produce images, and therefore can function regardless of weather, as well as at night. The combination of these two technologies has allowed scientists an increased ability to monitor where and when oil pollution is happening, providing an eye-in-the-sky to survey marine activities. While these space-based technologies are aiding in the detection of a variety of oil spill incidents, they are particularly helpful to monitor the illegal dumping of oil and effluent from shipping vessels as ships are no longer able to dump oily bilgewater into the ocean under the veil of darkness. Unfortunately, the enforcement of environmental and marine law remains an issue and ships are rarely prosecuted. It will be important for space-based technologies to continue to evolve and provide evidence of marine pollution in the effort to provide protection for Earth’s marine ecosystems.
C’est encore récemment, en 1916, que l’explorateur Padre De Agostini révéla une partie de la topographie des glaciers Escondidos (« glaciers caches » en francais). En Patagonie (De Agostini, 1949).
Have you ever considered how technological innovations from the space industry can benefit us here on Earth? You might be surprised to hear that non-space applications from space programmes are extensive.
From 10 to 13 May 2022, the United Nations Officer for Outer Space Affairs organized the 5th International conference on the use of space technology for water resources management. The conference was hosted in a hybrid format in Accra, Ghana, by the University of Energy and Natural Resources, Sunyani on behalf of the Government of Ghana. The event was attended by several senior government representatives of the host country including Dr. Mahamudu Bawumia, Vice President of the Republic of Ghana, the Honorary Minister of Education Dr.
Transitioning from the Millennium Development Goals (MDGs) to the Sustainable Development Goals (SDGs)
The world of WASH (water, sanitation, and hygiene) has come a long way in 30 years. Between 1990 and 2015, 2.6 billion people gained access to improved drinking water, whilst 2.1 billion gained access to improved sanitation (Unicef and World Health Organisation 2015). That’s a lot of people. But is it enough?
Irrigation illustrates a major dilemma of agriculture: On the one hand, a growing world population demands more food and biomass (for example for energy production). On the other hand, natural resources such as water are only available in limited quantities and excessive use often leads to the degradation of ecosystems, which in turn has adverse effects on agricultural production and local livelihoods.
Merci à Maria Nagui d'avoir traduit cet article volontairement.
Dans de nombreuses communautés autour du monde, l’eau peut devenir une corvée. L’insuffisance et l’accès limité à l’eau courante obligent les déplacements à la recherche de ressources, de les collecter et les ramener à la maison à l’aide de gallons, de sceaux et de grandes casseroles. Dans des nombreuses communautés en Afrique, les femmes assument cette responsabilité, comme dans la tribu de Samburu au Kenya. Pour les femmes de cette tribu, cette tâche est une routine quotidienne.
De nos jours, la société fait face à de nombreuses pénuries de ressources. Alors que la rareté des minéraux de la Terre et l’épuisement des combustibles fossiles figurent parmi les problèmes les plus cités à cet égard, nous risquons de connaitre un sort plus imminent et destructeur : une crise mondiale d’eau douce. La sous-estimation de ce problème par notre société a intensifié notre relation précaire avec l'eau et a mis en péril les moyens de subsistance de nombreuses personnes.
Pourriez-vous boire votre propre urine ? Pour la majorité, cette mesure ne serait prise que dans les cas les plus extrêmes. Cependant, les astronautes de la Station Spatiale Internationale (SSI ou ISS, Internationale Space Station, en anglais) boivent leur urine recyclée tous les jours depuis 10 ans. En 2008, l’SSI installe un Système de Récupération des Eaux (Water Recovery System en anglais) a bord de la station, permettant de recycler les eaux usées en transformant les urines, la sueur et l’humidité atmosphérique en eau potable.
Les eaux souterraines représentent 30 % des ressources en eau douce de la planète (Shiklomanov 1993) (figure 1) et fournissent au niveau mondial 36 % de l'eau potable, 42 % de l'eau d'irrigation et 24 % de l'eau industrielle, témoignant de leur valeur considérable (Global Environment Facility 2021).
On 2 February 2020, we celebrate World Wetlands Day to raise global awareness about the vital role of wetlands for people and our planet. This year’s edition highlights the connection between water, wetlands, and life.
Water hyacinth is a well-known plant that has invaded many aquatic ecosystems around the globe. The fast growing nature of the weed makes it challenging to contain. The weeds’ presence in aquatic bodies results in decreased oxygen and nutrient levels, which threatens aquatic life as well as the productivity and functionality of the whole aquatic ecosystem. This not only causes ecological disturbances but evidently socio-economic challenges arise as well as the weed can be detrimental to health as well as economic activities in many riparian communities worldwide. The use of space-based technology together with modern technologies is of great significance in capturing the weed and identifying its spatial and temporal distribution even in hard to reach places. This helps scientists better understand the weed and how infestation occurs which enables better management and control of the weed.
What does your morning routine look like? For most readers I’d assume you use the toilet, wash your hands, and maybe take a shower. However, do you ever stop to consider the water you use to shower, or the soap you use to wash your hands? Often, especially in developed countries, these things are taken for granted, rightly considering access to adequate water, sanitation, and hygiene (WASH) as basic Human Rights (Figure 1).
Mosquitos are often cited as one of the deadliest animals in the world, causing up to one million deaths per year (WHO, 2020; CDC, 2021). They can carry and transmit a variety of diseases, including malaria, West Nile virus, dengue fever, and Zika virus; transmitting illness across the globe (Figure 1). To help decrease the burden of disease resulting from mosquitos, researchers are utilising satellite data and remote sensing models to better predict where mosquito breeding grounds may occur in the future.
Water challenges — ranging from lack of access to safe drinking water and sanitation services, to hydrological uncertainty and extremes such as floods and droughts, to chronic water scarcity — are perceived as some of the greatest threats to global prosperity and stability (Sadoff et al. 2014). Many of these challenges are expected to intensify as climate change unfolds and population continues to grow (World Bank, 2017). Water resources are a critical asset in any country. Therefore, their monitoring, maintenance, preservation, and use abide strict rules and regulations enforced and executed by specialized personnel.
Jakarta, “the sinking city”, is the current capital city of Indonesia. Located on the Java Sea, this coastal city is home to nearly 30 million people within the greater-Jakarta area. Jakarta has grappled with water management issues for decades, leading to several current day water-related crises. Access to a reliable, potable water supply is extremely limited as there is a significant disparity between those with piped water access and those without. Citizens without piped water access have consequently relied heavily on groundwater and have dug thousands of unregulated wells as a result. This has led to a second water crisis – the chronic overextraction of Jakarta’s underground aquifers. Land subsidence is of the utmost concern as this sinking city is placed at high flood risk from the surrounding ocean. Approximately 40% of Jakarta now lies below sea level as a result and predictive models suggest that the entire city will be underwater by 2050 (Gilmartin, 2019). Compounding these problems, the climate crisis has led to significant sea level rise as glaciers and ice caps continue to melt (Intergovernmental Panel on Climate Change, 2019; Lindsey, 2022). As the city of Jakarta continues to sink and sea levels rise, millions of citizens within Jakarta are at extremely high risk of flooding, particularly during monsoon season. Thousands of residents have already been forced to abandon their homes in search of improved conditions and higher ground (Garschagen et al., 2018).
Africa is endowed with abundant freshwater resources. It has sufficient rainfall and relatively low levels of water withdrawals for three major uses: domestic, agricultural and industrial uses. Changes in Africa’s water resources has been noticed transpiring in changes in water flow and variability, falling groundwater levels, changes in rainfall levels and timing, strongly influenced under climate change. The continent has a huge potential for energy production through hydropower.
When rain falls on Earth, the water starts moving and flowing downhill through sewers and rivers as runoff. Runoff is extremely important to recharge surface water bodies and groundwater. Furthermore, runoff changes the landscape by action of erosion. It is an integral part of the water cycle (Earth Science Data Systems 2021).
Water in the atmosphere, in the soil, in rivers and oceans is in continuous exchange via the global water cycle. This is commonly thought to be the circular movement of water that evaporates from the Earth's surface, rises on warm updrafts into the atmosphere, and condenses into clouds. It is transported by the wind as water vapour, and eventually falls back to the Earth’s surface as rain or snow.
Avez-vous déjà pensé comment les technologies innovantes utilisées dans l’industrie spatiale peuvent nous profiter sur Terre ? Vous pourriez être surpris d’apprendre que les applications non-spatiales des programmes spatiaux sont extensibles.
Transition des Objectifs du Millénaire pour le Développement (OMD) aux Objectifs de Développement Durable (ODD)
Le monde de l'eau, de l'assainissement et de l'hygiène (WASH) a parcouru un long chemin en 30 ans. Entre 1990 et 2015, 2,6 milliards de personnes ont pu observer une amélioration de l’accès à l'eau potable, et 2,1 milliards ont eu une amélioration des services d’assainissement (Unicef et Organisation mondiale de la santé 2015). Cela fait beaucoup de monde. Mais est-ce suffisant ?
The impacts of climate change are ever more apparent. The frequency and scale of devastation and destruction of weather hazards are on an increasing trend. According to the latest Intergovernmental Panel on Climate Change Report (IPCC, 2021) climate change is intensifying the water cycle. This will cause more intense droughts in many regions. Moreover, water-related extremes impact the quality of life disproportionately strong. Drought accounts for 25% of all losses from weather-related disasters in the United States of America (Hayes et al., 2012).
Several ongoing projects are trying to detect plastic pollution in oceans by using Space technology
The ocean is where life began. It is home to the majority of the Earth’s plants and animals. However, there is currently another habitant endangering all species living under and above water. Humans included. The habitant is called “Plastic”. Plastic’s largest market is packaging designed for immediate disposal (Sigogneau-Russell, 2003).
The provision of water resources is one of the most fundamental ecosystem services . An acute scarcity of water data in both, the spatial and temporal domains in many regions prompts the urgency to assess risks related to water such as water quality decline, floods and droughts. Remote sensing does provide us with relevant data for water resources monitoring, but this data still needs to be validated with in-situ observations and measurements.
Continuous and reliable global precipitation information is crucial for myriad of weather, climate and hydrological applications. The importance of precipitation in the form of rain, hail, sleet, snow etc. is known to science and clear to a layman. However, it’s quite tricky to measure past precipitation trends or predicting accurate future forecasts. There are three main categories of precipitation data sets available: ground based, satellite-based and blended products of ground and space data (Climate Data Guide, 2014).
El 2 de febrero de 2020 celebramos el Día Mundial de los Humedales para concienciar al mundo sobre el papel vital de los humedales para las personas y nuestro planeta. La edición de este año destaca la conexión entre el agua, los humedales y la vida.
Merci à Mussa Kachunga Stanis d'avoir traduit cet article volontairement.
La résilience d'un socio-écosystème est généralement testée par sa capacité à persister et à maintenir sa fonctionnalité tout en subissant des changements dus à des perturbations. Mais que se passe-t-il lorsque les perturbations sont trop rapides, trop préjudiciables et trop fortes pour qu'un socio-écosystème puisse maintenir sa fonctionnalité ?
Can you imagine a group of young women empowering other women using geospatial technology? From July 10 to 13 July 2019 in the First Geospatial Rally for Women in Rural Aqueducts took place, where 30 women from very different contexts met with the same goal, to build an empowering space, in the Nicoya Campus (north of Costa Rica) of the University of Costa Rica (UCR). This was done with the intention to learn from each other.
À quoi ressemble votre routine matinale ? Pour la plupart des lecteurs, je suppose que vous utilisez les toilettes, vous vous lavez les mains et peut-être que vous prenez une douche. Cependant, vous arrive-t-il de vous arrêter pour réfléchir à l'eau que vous utilisez sous la douche ou au savon que vous utilisez pour vous laver les mains ?
Merci à Denis Gringas d'avoir traduit cet article volontairement.
L'eau potable est une ressource précieuse. Elle est à la base de notre vie quotidienne et décide comme aucune autre substance de notre santé et de notre bien-être. Il est donc important de s'assurer que l'eau d'usage quotidien réponde aux critères de qualité les plus élevés. Mais que signifie le terme qualité de l'eau et comment peut-on mesurer et comparer la qualité de l'eau? Cette question sera abordée et expliquée plus en détail dans les sections suivantes.
With increasing populations, groundwater abstraction also increased as about half of the global urban population access their water through aquifers (Foster et al., 2020). With 74% of the world population depending on it for safe drinking water services and sanitation (WHO and UNICEF, 2021), groundwater plays a vital role in health.
Cuando la lluvia cae sobre la Tierra, el agua empieza a moverse y a fluir cuesta abajo a través de alcantarillas y ríos en forma de escorrentía. La escorrentía es extremadamente importante para recargar las masas de agua de la superficie y las aguas subterráneas. Además, la escorrentía modifica el paisaje por acción de la erosión. Es una parte integral del ciclo del agua (Earth Science Data Systems 2021).
As population becomes larger the demand for water soars, including water needed for domestic, industrial and municipal uses (Mogelgaard 2011). One example of that, is India, where on 20 June 2019 the city of Chennai almost run out of water. Satellite images show the extent of the water shortage in the city (figure 1). While people are queuing up to get water from water trucks that transfer water to the city, the greatest struggle is taking place in the city’s municipal buildings and businesses. Hospitals are facing the threat of not having enough water to treat patients and to clean equipment, and businesses are forced to shut down and wait until the crisis is over.
Snow has a crucial contribution to Earth’s climate and helps to maintain the Earth’s temperature. When snow melts, it aids in providing water to people for their livelihood and affects the survival of animals and plants (National Snow and Ice Data Center). Approximately 1.2 billion people - constituting one-sixth of the global population - depend on snowmelt water for both agricultural activities and human consumption (Barnett et al., 2005).
Have you ever heard the phrase "All the rivers run into the sea"? In most cases, this statement holds, with one exception: rivers that end up in lakes. If you imagine mountain ranges as the walls of a bathtub, the ocean is like the bottom of the bathtub, collecting all the water from the bathtub. No matter where you live, you inhabit a land area where all the water, above and below ground, converges into a common body of water (Figure 1). We call this area a watershed. Watersheds vary in size.
Extreme weather events, such as sudden downpours or prolonged droughts, disrupt economies, ecosystems, and communities. These events are closely linked to aerosols—tiny atmospheric particles that influence the hydrological cycle by altering cloud properties and precipitation. Understanding the interactions between aerosols, clouds, and the hydrological cycle is essential for managing climate variability.
A new water-treatment technology used by astronauts aboard the International Space Station has the potential to provide clean water to millions of people worldwide. By using proteins called aquaporins, this system mimics the natural filtering abilities of human kidneys and plant roots to purify and recycle wastewater. With an increasing global water demand especially in remote locations where clean drinking water is not easily accessible, this technology has the potential to provide a more resource-efficient method of water purification not only in space, but here on Earth as well.
On September 10th of 2023, Storm Daniel made landfall in northeastern Libya, bringing torrential levels of rain and strong winds (Figure 1). This onslaught of rain caused two big dams in the region to break – the Abu Mansour dam and the Derna dam, 75 metres and 45 metres tall respectively. It is believed that the Abu Mansour dam broke first, after its reservoir was filled beyond capacity. The dam collapsed and sent a rush of water towards the Derna dam further downstream (Figure 2).
It was not long ago, in 1916, that the explorer Padre De Agostini surveyed part of the topography of the Escondidos glaciers (“hidden glaciers”, in English) in Patagonia (De Agostini, 1949). Today, space technology such as NASA’s ICESat Missions and Shuttle Radar Topography Mission (SRTM) data, allow to monitor changes in glaciers over time.
Different parts of world are experiencing extreme hydrological hazards such as droughts, flooding and other related events. Droughts are associated with absence of rainfall occurrence over an extended period. According to the United Nations (2022), the frequency and intensity of drought events in the last two decades has increased by 29%. These figures are expected to increase further in the coming years due to climate change (Gunathilake et al., 2020).
Imagine a world where your internet is delivered not through cables or cell towers but a vast swarm of orbiting satellites. That world is a very different place. Political borders are no longer communication boundaries. Your phone works just as well in the US as it does in Nigeria and Australia and Cambodia. You can communicate with people on the other side of the planet near the physical limits of information transmission, unconstrained by slow cable networks.
Today, society is facing a multitude of resource scarcities. While rare-Earth minerals and fossil fuel depletion are some of the most-cited issues in this respect, we risk a more imminent and destructive fate: a global freshwater crisis. Our societal underestimation of this problem has amplified our precarious relationship with water and has placed many people’s livelihoods at risk.
How would you feel about drinking your own urine? To most, it is a measure that would only be taken in the direst of circumstances. However, astronauts on the International Space Station (ISS) have been drinking recycled urine every day for the past decade. In 2008, the ISS installed the Water Recovery System, a wastewater recycling device which converts urine, sweat, and atmospheric moisture into drinking water. This device has allowed the ISS to be much more self-sufficient and devices like it could serve to more sustainably produce clean water on Earth.
When we think about geospatial technology, many of us imagine satellites for Earth observation and navigation, drones, and complex sensors used to collect information from the terrestrial surface. We also believe that most of the people capable of developing applications using geospatial data should hold a science-related Master or Ph.D. degree. The previous statement could not be further from the truth. Advances in technology have made access to geospatial technology possible for everybody.
Satellite imagery can be used to identify and monitor environmental and social impacts, and help solve human problems around the world. Despite rapid advancements in space-based technologies, not enough people have access to satellite data and all the insights it offers. Satellite imagery provides an objective way of verifying or validating the testimony of communities who are being impacted by social or environmental harms.
In Pakistan’s southern province, Sindh, lies the world’s only fertile desert in the world. The Tharparkar Desert stretches till the southeastern parts of Punjab, joining the Cholistan Desert. Tharparkar District is the largest of 29 districts in Sindh. According to Integrated Water Resource Management Practices to Alleviate Poverty – A Model of Desert Development in Tharparkar, Pakistan, the Thar is, people of Thar, have their livelihoods dependent on 'rainfall and livestock rearing, which is critical to household food security.'
Harmful Algal Blooms occur when toxin-producing algae experience excessive growth within bodies of water. These blooms have the potential to cause detrimental effects on both aquatic and human health and can sometimes even cause death, depending on the type of algae involved (NIEHS, 2021). Thanks to the use of space-based remote sensing technology to monitor water quality conditions in coastal areas and drinking water reservoirs, nations are becoming more aware of the quality of their water.
As population becomes larger the demand for water soars, including water needed for domestic, industrial and municipal uses (Mogelgaard 2011). One example of that, is India, where on 20 June 2019 the city of Chennai almost run out of water. Satellite images show the extent of the water shortage in the city (figure 1). While people are queuing up to get water from water trucks that transfer water to the city, the greatest struggle is taking place in the city’s municipal buildings and businesses. Hospitals are facing the threat of not having enough water to treat patients and to clean equipment, and businesses are forced to shut down and wait until the crisis is over.
Prof. Rita Colwell’s career has been dedicated to providing safe water to rural communities, with a focus on cholera, after studying marine microbiology. Through her work, she and her team developed a model that employs satellite sensing to monitor the environmental factors associated with cholera. Prof. Colwell is also Director of the National Science Foundation and is a proponent of an educated society and increasing the number of women and minorities in STEM. For her, the most exciting aspect of her current work is assisting countries such as Yemen in predicting the risk of cholera outbreaks, however she believes one challenge that remains is the poor understanding of how effective the use of satellite sensos are for predicting the risk of such water borne diseases.
Padmi is currently reading for her Ph.D. focusing on Nature-based Solutions (NbS) for climate change risk reduction and resilience cities. She believes NbS can reduce hydro-meteorological hazards such as floods, droughts, and landslides in the long run. It is a strategy to minimize the gaps in decarbonizing and reducing greenhouse gases and a path to Net-zero cities. NbS, are actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, benefiting people and nature (IUCN & World Bank, 2022). Ecosystem-based adaptation (EbA), ecosystem-based disaster risk reduction (Eco-DRR), ecosystem-based mitigation (EbM), and green infrastructure are some branches under the umbrella of NbS. NbS include conserving forests, mangroves, and wetland ecosystems, halting deforestation, increasing reforestation, climate-smart agriculture, and opening green spaces. According to her, space technology is integral to planning, monitoring, and analysis. Space technology today is so advanced that it can capture and predict changes in the water cycle, climate change variables and so forth. Remote sensing data and satellite-derived information are essential in obtaining accurate data on a specific site anywhere on the Earth's surface. Most recently, she has been involved in projects utilizing urban NbS such as the conservation of Ramsar-Colombo to mitigate urban floods and adapt to climate change. To conduct wetland inventories, space-based data and GIS techniques can be utilized to detect the presence of wetlands and/or water in wetlands. Though there can be some challenges encountered such as limited coverage of specific areas within the wetland, clouds often hiding images, and the low resolution of data making it difficult to differentiate floral species. Unmanned Aerial Vehicles (drones) can provide enhanced accuracy and consistency in measuring wetlands, as well as the presence of water in wetlands, using space technologies. Data and technologies from space contribute to watershed management, sediment measurements and many other environmental aspects.
Shaima Almeer is a young Bahraini lady that works as a senior space data analyst at the National Space Science Agency. At NSSA she is responsible for acquiring data from satellite images and analyzing them into meaningful information aiming to serve more than 21 governmental entities. Shaima is also committed to publishing scientific research papers, aiming to support and spread the knowledge to others.
In addition, she has recently graduated from a fellowship program at Bahrain’s Prime Minister’s Office. Shaima was selected among more than 1000 individuals to spend a year working as full-time research fellow, benefiting from advanced training in writing skills, research methods and policy analysis. The fellowship forms a core pillar of HRH the CP and PM initiative to improve national skills and support the Kingdom’s growing cadre of young government professionals. Part of the fellowship program is to work as a supervisor at the COVID-19 War Room.
Shaima has obtained her bachelor’s degree in the field of Information and Communication Technology from Bahrain Polytechnic and is currently pursuing her Msc. degree in Management Information System from the University College of Bahrain.
Prior to obtaining her bachelor’s degree, Shaima was titled as the first robotics programmer in the Kingdom of Bahrain and also won the title “Pioneering Women in Technology”. She has recently also won the “Women Innovator of the Year 2023 Award” in New Dehli.
Sarhan Zerouali became fascinated with water at a young age through learning about water scarcity around the world and about traditional methods for locating groundwater. In a space applications course Sahran then learnt about space-based technologies. He is currently working on a research project on how remote sensing and other technologies can help alleviate global challenges arising from land degradation. As an aerospace engineer, Sahran has worked with various modern technologies in his work including nanosatellites, artificial intelligence, and feature extraction algorithms.
Could you describe your professional career and/or personal experiences related to space technology and water? Where does your interest in those sectors come from?
I started my research career in 2013, with research interests revolving around various environmental concerns that were deeply rooted in water related issues of Pakistan. Having an educational background in Space Science, it was quite intuitive to possess understanding of the very high potential of applicability of Geospatial technologies in the water sector.
Victor Hertel is a doctoral researcher specializing in the field of environmental risks and human security. He currently works at the German Aerospace Center (DLR) on the development of (physics-informed) deep learning methods in the context of emergency response and disaster preparedness. With an academic background in aerospace engineering, he previously worked with organizations like Human Rights Watch and the United Nations Office for Outer Space Affairs’ UN-SPIDER program, using geospatial analyses to address environmental and social challenges. His primary area of interest is data-informed decision-making and policy, with a focus on practical and implementation-oriented solutions for humanitarian emergencies caused by climate shocks and conflict.
This interview provides an in-depth look at my expertise and experience in water resource management, environmental conservation, and the integration of AI and remote sensing technologies in Burkina Faso. My passion for water management stems from my desire to protect precious resources and my belief in the essential importance of providing water to communities, a principle reinforced when I joined the Ministry of Agriculture in 2021.
As a Water and Environment Specialist at the General Office of Agro-Pastoral Development and Irrigation, I am responsible for irrigation systems, lowland rice-growing areas, and the protection of water infrastructure, while integrating innovation and remote sensing technologies to improve performance. My work also focuses on community conservation, including the removal of invasive aquatic plants from reservoirs and the treatment of gullies to combat soil erosion.
I have experience in remote sensing and AI-based applications such as ML and DL for monitoring flood risks, erosion, and irrigation systems. I use machine learning algorithms such as CNN, Random Forest, U-Net, and SVM to analyze satellite images, predict the spread of invasive plants, and optimize water use.
My research on integrating traditional knowledge into water management highlights the SoaSoagha concept, a collective work approach in Burkina Faso that promotes community conservation. Traditional rainwater harvesting, floodplain management, and small earthen dams (soussous) align with modern hydrological models, while sacred forests and customary water rights have been revealing, demonstrating indigenous methods of ecosystem protection.
My project on AI-powered aquatic invasive plant management integrates machine learning (Satellite image analysis to classify areas with a high probability of aquatic plant presence), deep learning (Precise segmentation of invasive plants, such as water hyacinth and others, in these identified areas), and community engagement to extract, classify, and convert plants into compost, biogas, and biochar. My work highlights the importance of combining technological innovation and traditional knowledge to strengthen climate resilience, ensure water security, and promote sustainable development in Burkina Faso and beyond.
Margherita is an interdisciplinary Earth scientist and drone pilot with a background in geologic and environmental sciences. She has international experience working in fields such as Earth Observation (EO), remote sensing, drones & geospatial data analysis applied to the environmental and humanitarian sectors, sustainability and climate change. Margherita is passionate about natural and climate-related technologies that can be used to develop sustainable and long-lasting solutions. She is working for a more inclusive world (Women in Geospatial+), without any sort of geographical or social barriers.
Keywords: Science communication, Climate Change, STEM, inclusivity, sustainability, nature, hydrosphere, hydrology, water risks, Earth Observation (EO), satellite data, flood modeling, vulnerability, resilience, lifelong learning
Region/Country mentioned: Temperate climates, Arid climates, Luxembourg, Niger
Relevant SDG targets: 1, 4, 6, 9, 11, 13, 17
Please describe how your professional (and/or personal) experience relates to space technologies and their applications to water resources management.
I am an expert in hydroinformatics, mainly involved in research projects and research supervision of MSc and PhD students. My research focusses on physically based models for inland waters (rivers and lakes). One of the major fields where modelling is used in water resources is flooding. In order to have adequate representation of floods, most models require large amounts of data, both for model building and model usage.
Dr. Nivin Hasan discusses her pioneering work in space technology and water resource management, emphasising the role of remote sensing and geographic information systems (GIS) in addressing climate challenges in Jordan and the Middle East and North Africa (MENA) region. She highlights her research on drought assessment in the Amman-Zarqa Basin using satellite data and machine learning, underscoring the need for innovative solutions in arid zones. As a Technical Advisor at Royal Jordanian Geographic Centre (RJGC), she oversees projects integrating geospatial analysis for sustainable groundwater management and disaster resilience.
Her proudest achievements include leading Jordan’s first CANSAT project and receiving global recognition for empowering women in STEM. She identifies water scarcity, climate variability, and data gaps as critical challenges in arid regions and advocates for space-based monitoring systems to enhance mitigation strategies.
Dr. Hasan encourages young women to pursue space science, stressing mentorship and perseverance. She calls for interdisciplinary collaboration and funding to drive innovation in environmental monitoring. When asked about her favourite aggregate state of water, she humorously notes its irrelevance to her research but acknowledges the symbolic importance of liquid water for life in arid landscapes.
Malek Abdulfailat has over 10 years of experience mapping and coordinating water-related projects in Palestine, Israel, and Jordon. He is currently leading a new consultation firm working on three projects: Green businesses and Water, EcoTourism and Water, and Solid waste management through women leaders. He has experience using several different space based technologies including spatial analysis and water elevation mapping. He’s realises the importance of space based technologies and believes that one factor needed to unlock their true potential is by increasing access to such tools and by better communicating their potential to policy makers.
Joshua is a Master’s student in Tropical Hydrogeology and Environmental Engineering at Technische Universität of Darmstadt. His interest is focused on hydrogeological processes, groundwater modelling, application of remote sensing and GIS in environmental studies, water management and climate change. He also works as a graduate Intern at AgriWatch BV, a company that applies geospatial solutions for precision Agriculture. As a graduate intern, he applies his interdisciplinary knowledge in developing smart-farming solutions using space-based technologies to farmers in the Twente region of the Netherlands. He deploys satellite imagery, field studies and machine learning algorithms to predict the effect of climate change on arable crops. He also utilizes precipitation data to predict rainfall events to aid farmers in determining planting and harvesting periods.
Joshua earned a bachelor’s degree in Geological Sciences, his bachelor’s thesis research aimed at carrying out paleoenvironmental reconstruction using paleocurrent indicators of water flow and direction, and application of ArcGIS to produce maps. Currently, he is working on his master’s thesis with emphasis on the impact of the ancient climate on the paleoenvironment particularly on vegetation, where he tries to research plants response to long-term greenhouse periods and short-term warming events on various timescales throughout Earth's history.
His research interests revolve around the application of space technologies in providing solutions and tackling climate change.
Describe your professional (and/or personal) experience relating to water (and space technologies). Please indicate whether an experience is related to water or to both, space and water).
I have always had an interest for science and the environment and before starting university I was introduced to hydrology which really caught my interest and led me to studying a BSc Degree in Hydrology and Geography.
Egline Tauya has focussed her career on natural resource management, after growing up in a rural area and learning to value such resources from a young age. Her work has been based in Africa and has included the use space technologies to map flood risks and vulnerable areas around the Zambezi and Limpopo River basins. Egline develops Environmental Outlooks as part of her work, which are reports that provide an integrated assessment of the state and trends of key environmental resources, such as freshwater, forest, and wildlife. Egline strongly believes in the integration of indigenous knowledges into water resource management and the crucial, but currently limited use of remote sensing in groundwater monitoring.
I am currently a PhD candidate at the University of Stirling in Scotland, funded by the Natural Environmental Research Council through the IAPETUS DTP. My research focuses on using SAR Polarimetry to map and monitor floods in Scotland and Guyana. Additionally, I use ground radar to understand signal interactions under simulated flooding conditions, aiming to improve flood detection. My goal is to enhance the management and protection of floodplains and wetlands through advanced radar satellite technology and field-tested methodologies.
Before my PhD, I worked as an assistant hydrologist at the SERVIR Eastern and Southern Africa project at the Regional Centre for Mapping of Resources for Development in Nairobi, Kenya, from 2019 to 2022. In this position, I led the development of an operational hydrological model that improved access to hydrological data for ungauged rivers in East Africa. I was also the lead hydrologist in the implementation of a flood early warning system in Malawi, integrating ground measurements and satellite-derived water level data to issue flood forecasts.
Valdilene Siqueira has a diverse background in chemistry and environmental engineering and is currently pursing a master’s degree in Sustainable Territorial Development. Her work and experience has always been closely tied to water management and sanitation. She believes that access to water and ensuring the sustainable management of water resources in a fast-paced changing world are two of the most important challenges for the coming years. Valdilene feels that achieving mutual understanding on how to manage this resource, especially in water-scarce regions, is a real challenge for decision-makers but considers that an intersectoral, integrated and participatory approach is capable of bringing stakeholders together to reconcile their different interests and build collective solutions.
In this interview, we discuss how time-series of satellite data can be used to monitor the environmental, and more specifically the water domain, using the data cube technology.
Lukas Graf used to take clean drinking water for granted. As he grew up, and conversations around climate change and environmental destruction became increasingly intense, he started to become more aware of the importance and scarcity of water resources. Around a similar time, he became increasingly enthusiastic about space, realising that space technologies could be used to explore many of the pressing topics that he was interested in. He has participated in research projects that used remote sensing methods to study the effects of global change on ecosystems and especially on water availability. Lukas is interested in a range of topics from virtual water and water quality to irrigation and agriculture. He believes that interdisciplinary approaches and mutual dialog with societies and stakeholders need to be deepened for sustained resource management.
Describe experience relating to water and space technologies
I grew up in a country (France) where water is freely available. The drought in 2003 was considered a one-time event. I had no single lesson on climate change at school. Despite this background, I was raised aware of the links between social and environmental inequality on a global scale.
Short description of community and hydrogeology of the area
Yucatan is located in the southeast portion of Mexico. The total area of Yucatan is 124, 409 km2 and the population (by 2018) was ca. 2.1 million inhabitants. The landscape of the area is defined by a highly permeable karstic soil, a notable absence of rivers or permanent freshwater resources in the surface, and a high number of natural wells or sinkholes (locally called cenotes, from the Maya word t´sonot).
Our community is made up of direct descendents from our ancestors; Te Huia and Rangiwherowhero. Our Trust is made up of over 700 beneficiaries and is from the Ngāti Maniapoto and Ngāti Apakura tribes which has over 60,000 overall affiliated tribal members.
Prof. Larson’s career has been focussed on using the Global Positioning System, and more recently using GPS to measure hydrological parameters, such as water levels in lakes, rivers, and the ocean, soil water content, and the depth of snow. To innovate, she Emerita believes a willingness to be different is key. She feels strongly about bringing space technologies closer to people by communicating better the important role that space technologies play and by making measurements from satellites easier for people to access.
Prof. Susanne Scheier’s interest in water diplomacy, conflict and cooperation came from a long passion for water and the environment due to a love of the outdoors and being close to rivers and mountains as a teenager. She now uses her passion in her work, identifying and responding to challenges around shared water resources. She uses space technologies in her work with the Water, Peace and Security (WSP) partnership to identify hotspots of potential water-related conflicts early on and to raise political awareness with policy-makers.
I should note that this interview does not aim to compare the San women of Platfontein with the Zulu women from Folweni as these are totally different communities. Also, as much as I am a Commissioner, this interview is not done on behalf of the Commission on Khoi-San Matters (CKSM) but on my personal capacity as a researcher and academic who has an interest on issues pertaining to women.
How do you personally and professionally relate to water?
Growing up in Israel, water scarcity was a constant backdrop to my childhood. The arid climate and frequent droughts shaped my relationship with water from an early age. One vivid memory that remains stamped in my mind is the series of TV campaigns highlighting the importance of water conservation. I recall sitting in front of the television, concerned by the urgency conveyed in those campaigns. The images of dry landscapes and the emphasis on every drop of water as precious left a lasting impression.
Ruvimbo Samanga, despite her age, has vast experience in the law, space, and water sectors. She is presently involved in a regional study on the integration of GIS and statistical information in Zimbabwe, working towards the promulgation of GIS standards and legislation to support a National Spatial Data Infrastructure (NSDI). Ruvimbo is excited by the merging of sustainable development for water management with space technologies because it is scalable, environmentally friendly, and cost-effective over the long run. Ruvimbo feels strongly that space technologies have a role to play in policy and legal affairs, and also sees potential especially in the use of emerging technologies such as block chain, artificial intelligence (AI) and quantum computing.
The Samburu community is the Nilotic ethnic community of North Central Kenya. They dress in red shukas and adorn themselves with necklaces, bracelets and anklets mostly from beads. They believe in God Nkai, living in the mountains. They are nomadic are pastoralists, meaning that they keep animals (e.g., cows, goats, sheep and camel) which is their main source of livelihood as they get milk, meat and blood for self consumption and/or to be sold. They move from place to place in search of pasture and water.
Prof. Hesham El-Askary works at Chapman University in the Earth Systems Science Data Solutions (ESsDs) lab. Here, he supervises students on the use of satellite earth observations for topics including agriculture, water resources, air quality and climate action, and makes use of Artificial Intelligence (AI) and Machine Learning (ML). Prof. El-Askary is researching natural and anthropogenic pollution’s influence on the environment and is particularly interested in the concept of “glocal” impact—how what’s happening globally in terms of climate affects us locally. He believes that one of the biggest challenges in implementing sustainable water management is the lack of data to monitor progress, and advocates for space technologies to mitigates this shortage.
Dr. Aziza Baubekova's research tackles critical environmental and water-related challenges in water-scarce regions using innovative approaches like remote sensing and machine learning. Her work not only advances scientific knowledge but also offers practical and policy solutions for developing countries. By applying quantifiable methods, her research provides actionable tools for integrated water resources and ecosystem management, addressing issues related to hydrologic conditions and human impact.
Despite earning all her degrees in Europe, Dr. Baubekova maintains a deep connection to Central Asia, focusing her research on the region's unique environmental challenges. As a Postdoctoral Researcher in the Water, Energy, and Environmental Engineering Research Unit at the University of Oulu, she contributes significantly to projects like TU-NEXUS, which aims to develop decision-making tools for transboundary river management in Central Asia. Her PhD, completed with distinction in 2023, covers topics such as hydrologic changes, climate change impacts, and coastal ecosystem threats.
Beyond her academic work, Dr. Baubekova actively fosters partnerships between Finland and Central Asian institutions, supporting knowledge transfer and technology exchange. As Vice Chair of Young Water Professionals Finland, she promotes professional development, knowledge sharing, and networking opportunities for young water experts.
The following interview with Dr. Sherine Ahmed El Baradei is focusing on water quality and its relation to space technology. Water is the essence of life. Thus preservation of water quality is of a big concern to human health and to fauna and flora in water bodies. The interview explains what is water quality and what are water quality parameters of water bodies. Furthermore, the importance of using space technologies and applications in contributing to water quality monitoring and determination of hydraulic and hydrologic conditions is thoroughly discussed. For example, temporal resolution of satellites and their role in obtaining accurate imaging and data is clarified and the satellites concerned with water quality monitoring are pointed out. Considering the important role of groundwater in arid regions, the use of GRACE Mission data in Egypt is mentioned. Moreover, key influences on water quality in Egypt are discussed and the relation of water quality to water scarcity in the country and ways to preserve water quality is being discussed. Furthermore, the potential of space-based monitoring used to address water issues from hydrological to water resources issues in the country or region is pointed out. The challenges of the use of space technology for hydrology and water-related topics in the MENA region is also discussed. Light is shed on the project done by NASA to recycle astronauts’ waste into energy and power. Sustainability is of a great importance to or communities, and thus it is discussed how sustainable it is to build cities in the desert, or to divert water to where people are instead of moving people to existing water sources. Finally, a discussion about ways we can employ to improve awareness and capacity building on the use of space technology for water and challenges in this field are discussed.
How do your professional career and/or your personal experience relate to space technologies and water?
My interest in water is deeply rooted in my personal life. I grew up on an island in the Philippines where a lot of people depend on water as a source of livelihood. From fishing in the open sea to fish breeding, water has always been a source of income at home. Aside from this, the small community where I grew up struggled with access to running water.
In this insightful interview, Prof. Lakshmi shares how space technologies are transforming our understanding of Earth’s water systems. Using satellite sensors that detect visible, infrared, microwave, thermal, and gravity data, he studies key variables like soil moisture, precipitation, and vegetation to track water movement across the planet.
As President of the American Geophysical Union’s Hydrology Section—home to nearly 10,000 global members—he helps coordinate scientific committees, awards, and one of the largest gatherings of Earth scientists at the AGU Annual Meeting.
One of his many standout projects involves downscaling soil moisture data from NASA’s SMAP satellite. By integrating data from MODIS and VIIRS instruments, his team has refined soil moisture resolution from 9 km to as fine as 400 meters—which is critical for applications in agriculture, weather forecasting, and climate science.
Looking ahead, he emphasizes the urgent need for efficient water use in agriculture, which consumes 70 per cent of global freshwater. He advocates for innovation and smarter water management, especially in the face of population growth and climate extremes.
His advice to young professionals? Dive into water science—it’s at the heart of global challenges like droughts, floods, and wildfires. And when asked what drives innovation, his answer is simple: motivated young minds.
Claudia Ruz Vargas is a civil engineer, graduated from the University of Santiago, Chile, with an international master’s degree in Groundwater and Global change. Her master thesis focused on groundwater modelling for recharge and saline intrusion risk assessment under climate change scenarios, in Cape Verde. Claudia has six years of work experience as a project engineer and researcher. She is currently a researcher at the International Groundwater Resources Assessment Centre (IGRAC), where she is involved in projects of high impact on the groundwater sector. In this interview, we talked to her about her career path, and how she has contributed to an improved and more sustainable management of groundwater resources, at a regional and global levels.
Webster is a PhD student at the University of Twente’s Faculty of Geoinformation Science and Earth Observation. His PhD thesis is entitled: Observing Zambezi Basin from Space: Satellite based bias correction for hydrological modelling: Webster is also lecturer and researcher at the University of Zimbabwe’s Construction and Civil Engineering Department. He is the coordinator of the regional master’s degree programme in Integrated Water Resources Management, a capacity building programme for the water sector in Southern and Eastern Africa. His research interests are in the areas of GIS and Earth Observation applications in water resources management, sanitation, water quality and disaster management. He is also a consultant who has been seconded as a GIS mentor to many government institutions and developmental partners in Southern Africa. Webster has over 60 publications, numerous regional and international conference papers in areas of spatial and quantitative hydrology, water resources management, quantification of water cycle components and feedbacks between climate, land-uses, water cycles and other societal influences. Webster is the Chief Editor of the Journal of Environmental Management in Zimbabwe (JEMZ).
Short description of the Mikisew Cree First Nation community
Nestled on the northwest shore of Lake Athabasca, Fort Chipewyan is one of the most northern communities in the Regional Municipality of Wood Buffalo. Isolated by nature, Fort Chipewyan can only be accessed by plane or boat in the summer and by a winter road in the winter.
Photo: Tääk ë´mëj (grandmother) cleansing her wooden cane. In Tamazulápam women guide the spiritual life of people in the community and teach younger generations the rituals and forms to interact with nature. Credits: Joselí Martínez-Vidal, Young Ëyuujk man from Tamazulápam del Espíritu Santo, Mixe, Oaxaca.
Ailin Sol Ortone Lois is a Remote Sensing specialist at Remote Sensing Center of the Argentinian Air Force, where she applies space technologies to monitor Natural Areas of the Defense. She is the Director of Synthetic Aperture Radar Research Group at the National University of Technology (UTN), where she leads a project related to glacier monitoring and mass balance calculations using free open remote sensing sources. Ailin also teaches physics at UTN and geomatics at the National University of Luján, in Buenos Aires.
Dr. Pietro Campana studied environmental engineering with a focus on fluid dynamics, hydrology, and water resource management, before undertaking a PhD on solar irrigation systems. He is working on the water-food-energy nexus and is currently evaluating the first agrivoltaic system (a photovoltaic system that allows the combination of both electricity production and crop production on the same land to increase the land use efficiency) in Sweden. He constantly strives to work on something that can make a difference to people’s lives and finds developing tools and services that can solve water issues very exciting. He believes that to address the nexus challenges, we need novel technologies and more research and development funding.
Rebecca Gustine is currently a PhD student at Washington State University in the Department of Civil and Environmental Engineering studying civil engineering with a focus on water resources. She is also an intern at NASA JPL where she is a member of the ECOSTRESS applied science mission team working with local agencies to inform resource management and conservation efforts. We talked to her about her interdisciplinary research experiences through her undergraduate and graduate school.
Ayan Santos Fleischmann is a hydrologist with a particular interest in wetlands and large-scale basins, mainly in South America and Africa, and in the context of human impacts on water resources. His main study approaches involve remote sensing techniques and hydrologic-hydrodynamic modeling, as well as interdisciplinary collaborations with other disciplines such as ecology and social sciences. Currently, he is a researcher at the Mamirauá Institute for Sustainable Development (Tefé, Amazonas, Brazil), where he leads the Research Group in Geospatial Analysis of the Amazonian Environment and Territory. He also leads the Conexões Amazônicas initiative for science communication about the Amazon Basin. Ayan holds a PhD degree from UFRGS, with a collaborative period at Université Toulouse III – Paul Sabatier (France). His Ph. D. thesis focused on the hydrology of the South American wetlands. Ayan holds an Environmental Engineering degree from the Universidade Federal do Rio Grande do Sul (UFRGS), with a research stay at the University of East Anglia in the United Kingdom. In this interview, we talked to him about his career path, the work he has been developing in Brazil with wetlands and floods, and his work in the Amazon River basin.
Describe your professional (and/or personal) experience relating to water and space technologies.
My interest in water is a result of my background in Geology. I come from a region (Katanga Province, Congo DR) where mining is the main source of livelihood. So, I had my bachelor's degree in Geology intending to work in the mining sector after graduation. However, towards the end of the bachelor’s programme, I was exposed to the deployment of geophysical equipment for water prospecting in my department.
Simonetta di Pippo, Director of UNOOSA, has experience in the space sector for around 40 years. She has been involved in some very instrumental missions, from those which helped to discover water on Mars, to landing on and exploring a comet, to those that helped sustain human life on the ISS. Her aspiration in life is to have a profession that allows her to work and learn at the same time, with her current career affording her this dream. Curiosity and diversity are both crucial in her opinion for innovation and it is her personal and professional goal to encourage more women to pursue STEM education and careers.
The municipality of San José Poaquil was founded on November 1, 1891. It is located in the department of Chimaltenango with a territorial extension of approximately 100 km² and has almost 30 000 inhabitants. It is one of the 16 municipalities that make up the department of Chimaltenango. It is located in the west of the Republic of Guatemala at a distance of 101 kilometers from the Capital City and distance 47 kilometers from the Departmental Capital.
You are currently a Senior Fellow and Cluster Coordinator: Nature, Climate, and Health at UNU – CRIS, can you elaborate on your role, and how it relates to water?
The world faces big problems like climate change, water shortages, and health issues. At UNU CRIS, our Nature, Climate, and Health Cluster studies how these problems are linked. We see that climate change makes things like water and food scarce, which hurts people's health. Our research shows how climate change affects water, food, and health security.
How do you professionally relate to water and/or space technologies?
As a hydrologist, I’ve always been fascinated by the potential of space technologies in transforming water resource management. My work integrates satellite-based Earth Observation (EO) data with hydrological modelling, particularly for drought and flood monitoring, and water availability assessments in regions with scarce ground data. EO technologies allow me to capture real-time, high-resolution data, critical for climate resilience, especially in Sub-Saharan Africa.
Basuti Gerty Bolo dreamt of space science and of becoming an astronaut when she was only 8 years old. She then wanted to be a pilot, before studying space applications and space and atmospheric science. Her curiosity for space science was sparked by an interest in knowing more about unexplained mysteries of things happening in space, such as the cause of some plane crashes. Basuti works exceptionally hard to disseminate space knowledge. She is an Endowed Chair for Educational Technologies at Africa University in Zimbabwe, a UNOOSA Space for Women Network mentor, and is starting a space for women and girls network called Space4Women_AfricaDreamers to spread space awareness and promote gender equality.
Could you describe how your professional and/or personal experience relate to water? Where does your interest in space technology for water come from?
I have a solid understanding of the fundamentals of hydrologic and hydraulic engineering, which is relevant to water. I studied many courses in my undergraduate and postgraduate degrees where I learned how runoff in a watershed is generated from meteorological parameters including rainfall, evapotranspiration and infiltration. I also applied my theoretical knowledge to various projects.
Hannah has always had a love for the outdoors and especially for being by the sea. From her interest in both hydrogeology and development, developed during her undergraduate studies in geology and her travels respectively, she is now undertaking a PhD in WASH, researching water security in rural communities in Kenya. Hannah undertook a six-month internship with Space4Water at UNOOSA in 2021, where she developed her understanding of the importance and application of space-based technologies in the water sector. She believes that groundwater and sanitation are two areas where space technologies are currently under-exploited but in which they hold a lot of potential.
Mr Stuart Crane, has been program coordinator at the United Nations Environment Program and its Center for Water and Environment since 2017. Mr Crane has experience in international intergovernmental organizations since 2009 and dedicated large parts of his career to working on environmental issues such as energy, climate change and water. His professional background is in Environmental Quality and resource management, and he received his post graduate degree in International Development. On behalf of UNEP, he coordinates a global SDG 6 fresh water program that supports 193 countries with progressing towards SDG. 6 targets on improving the water governance, ecosystem management and reducing freshwater pollution.
The SADC Groundwater Management Institute will host its 5th SADC Groundwater Conference on 16, 17 & 18 November 2022.
The conference is held annually, with the primary objective of providing a platform for the advancement of knowledge sharing on sustainable management of groundwater at national and transboundary levels across SADC Members States
This year the event will be physically held in Windhoek, Namibia with an online participation option.
The Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW) is an international award focusing on water-related scientific innovation and judged by leading scientists from around the world. It gives recognition to scientists, researchers and inventors around the world for pioneering work that addresses the problem of water scarcity in creative and effective ways. Five prizes are bestowed every two years.
Water is one of the most important substances on Earth and covers 70% of the planet. However, freshwater makes up a very small fraction with 97% being saline and ocean-based. While the amount of freshwater on the planet has remained fairly constant over time, the world’s population has exploded, meaning that freshwater is threatened by significant forces, like overdevelopment, polluted runoff, and global warming.
For the G3P project, the consortium aims at developing a product of groundwater storage variations with global coverage and monthly resolution from 2002 until present by a cross-cutting combination of GRACE and GRACE-FO satellite gravity data with water storage data that are based on the existing portfolio of the Copernicus services. To ensure that this product will be of use to potential users, various stakeholders have been requested to participate in a user requirements survey. The consortium invites policy makers, commercial users, academic users, scientific and data organisations or any other interested individual to fill out this survey until 31 July 2021 and thereby help to create the ideal global gravity-based groundwater product.
The aim of the local perspectives and case studies feature is to learn about gaps in water resource management from affected individuals, communities, civil society, professionals, researchers or organisations in the field to identify needs or potential solutions that space technologies could contribute to.
The aim of the local perspectives and case studies feature is to learn about gaps in water resource management from affected individuals, communities, civil society, professionals, researchers or organisations in the field to identify needs or potential solutions that space technologies could contribute to.
Are you an indigenous women or in touch with indigenous communities. Don't miss this chance to make the voices of indigenous women heard. We would like to contribute to closing the digital divide, as well as to raise the voices of indigenous women on their views realated to water and the environment.
Spread the word about this opportunity so we can reach as many Indigenous women as possible.
The Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW) is an international award focusing on water-related scientific innovation and judged by leading scientists from around the world. It gives recognition to scientists, researchers and inventors around the world for pioneering work that addresses the problem of water scarcity in creative and effective ways. Five prizes are bestowed every two years.
Of the 300 million tons of plastic produced every year, an estimated 26 million eventually ends up in the ocean. As a result, some estimates suggest there are now 5.25 trillion pieces of plastic in our oceans and seas. Even more concerning is the fact that this number is expected to increase, with National Geographic predicting that the annual amount of plastic flowing into the oceans will triple by 2040.
The aim of the local perspectives and case studies feature is to learn about gaps in water resource management from affected individuals, communities, civil society, professionals, researchers or organisations in the field to identify needs or potential solutions that space technologies could contribute to.
The United Nations Office for Outer Space Affairs (UNOOSA), in collaboration with the Space Generation Advisory Council (SGAC), has launched the 2022 edition of the Space4Youth Essay Competition! Water scarcity is a major global challenge. Young people play a key role. UNOOSA and SGAC want to give a voice to and promote youth's ideas on the use of space for water resources management and aquatic ecosystem preservation.
Are you interested in leveraging public Earth observation data and visualization techniques to contribute to SDGS? You have until 26 January 2024 to sign-up to the PaleBlueDot challenge organized on behalf of NASA and the US mission to international organization in Vienna.
Cairo Water Week 2023’s scientific committee invites researchers from all over the world to present their work at the technical sessions by submitting the following:
Abstracts
Extended Abstracts (upon acceptance of abstracts)
At the CWW2023, there will be a wide variety of opportunities for discussion, networking, and the exchange of knowledge regarding the conference’s five themes.
A digital version of the CWW2023 Proceedings will be published on the conference website.
The African Ministers’ Council on Water (AMCOW) launched Africa’s Voice on Water (AVOW) magazine in August 2023, during the Stockholm World Water Week.
Target
We welcome contributions from member states, River and Lake Basin Organisations (RLBOs), Regional Economic Communities (RECs), the academia, network of development partners, civil societies, private sector and other stakeholders.
The Innovation Workshop on Water Quality Monitoring & Assessment, organized by World Meteorological Organization (WMO), United Nations Environment Programme (UNEP), United Nations Educational, Scientific and Cultural Organization (UNESCO) and World Water Quality Alliance (WWQA), co-organized with and supported by the European Commission’s Joint Research Centre (JRC) and in partnership with the International Atomic Energy Agency (IAEA) and the United Nations Institute for Training and Research (UNITAR), will take place from 27 to 29 September 2023 at the JRC in Petten, Netherlands.
San José, Costa Rica, 7-10 May 2024 (with a possibility of online attendance)
Hosted and supported by the Inter-American Institute for Cooperation on Agriculture (IICA)
Co-sponsored by the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW)
Venue: Inter-American Institute for Cooperation on Agriculture Headquarters, San José, Costa Rica
I am currently a PhD candidate at the University of Stirling in Scotland, funded by the Natural Environmental Research Council through the IAPETUS DTP. My research focuses on using SAR Polarimetry to map and monitor floods in Scotland and Guyana. Additionally, I use ground radar to understand signal interactions under simulated flooding conditions, aiming to improve flood detection. My goal is to enhance the management and protection of floodplains and wetlands through advanced radar satellite technology and field-tested methodologies.
Before my PhD, I worked as an assistant hydrologist at the SERVIR Eastern and Southern Africa project at the Regional Centre for Mapping of Resources for Development in Nairobi, Kenya, from 2019 to 2022. In this position, I led the development of an operational hydrological model that improved access to hydrological data for ungauged rivers in East Africa. I was also the lead hydrologist in the implementation of a flood early warning system in Malawi, integrating ground measurements and satellite-derived water level data to issue flood forecasts.
Valdilene Siqueira has a diverse background in chemistry and environmental engineering and is currently pursing a master’s degree in Sustainable Territorial Development. Her work and experience has always been closely tied to water management and sanitation. She believes that access to water and ensuring the sustainable management of water resources in a fast-paced changing world are two of the most important challenges for the coming years. Valdilene feels that achieving mutual understanding on how to manage this resource, especially in water-scarce regions, is a real challenge for decision-makers but considers that an intersectoral, integrated and participatory approach is capable of bringing stakeholders together to reconcile their different interests and build collective solutions.
Lukas Graf used to take clean drinking water for granted. As he grew up, and conversations around climate change and environmental destruction became increasingly intense, he started to become more aware of the importance and scarcity of water resources. Around a similar time, he became increasingly enthusiastic about space, realising that space technologies could be used to explore many of the pressing topics that he was interested in. He has participated in research projects that used remote sensing methods to study the effects of global change on ecosystems and especially on water availability. Lukas is interested in a range of topics from virtual water and water quality to irrigation and agriculture. He believes that interdisciplinary approaches and mutual dialog with societies and stakeholders need to be deepened for sustained resource management.
Describe experience relating to water and space technologies
I grew up in a country (France) where water is freely available. The drought in 2003 was considered a one-time event. I had no single lesson on climate change at school. Despite this background, I was raised aware of the links between social and environmental inequality on a global scale.
Ruvimbo Samanga, despite her age, has vast experience in the law, space, and water sectors. She is presently involved in a regional study on the integration of GIS and statistical information in Zimbabwe, working towards the promulgation of GIS standards and legislation to support a National Spatial Data Infrastructure (NSDI). Ruvimbo is excited by the merging of sustainable development for water management with space technologies because it is scalable, environmentally friendly, and cost-effective over the long run. Ruvimbo feels strongly that space technologies have a role to play in policy and legal affairs, and also sees potential especially in the use of emerging technologies such as block chain, artificial intelligence (AI) and quantum computing.
Dr. Aziza Baubekova's research tackles critical environmental and water-related challenges in water-scarce regions using innovative approaches like remote sensing and machine learning. Her work not only advances scientific knowledge but also offers practical and policy solutions for developing countries. By applying quantifiable methods, her research provides actionable tools for integrated water resources and ecosystem management, addressing issues related to hydrologic conditions and human impact.
Despite earning all her degrees in Europe, Dr. Baubekova maintains a deep connection to Central Asia, focusing her research on the region's unique environmental challenges. As a Postdoctoral Researcher in the Water, Energy, and Environmental Engineering Research Unit at the University of Oulu, she contributes significantly to projects like TU-NEXUS, which aims to develop decision-making tools for transboundary river management in Central Asia. Her PhD, completed with distinction in 2023, covers topics such as hydrologic changes, climate change impacts, and coastal ecosystem threats.
Beyond her academic work, Dr. Baubekova actively fosters partnerships between Finland and Central Asian institutions, supporting knowledge transfer and technology exchange. As Vice Chair of Young Water Professionals Finland, she promotes professional development, knowledge sharing, and networking opportunities for young water experts.
How do your professional career and/or your personal experience relate to space technologies and water?
My interest in water is deeply rooted in my personal life. I grew up on an island in the Philippines where a lot of people depend on water as a source of livelihood. From fishing in the open sea to fish breeding, water has always been a source of income at home. Aside from this, the small community where I grew up struggled with access to running water.
Claudia Ruz Vargas is a civil engineer, graduated from the University of Santiago, Chile, with an international master’s degree in Groundwater and Global change. Her master thesis focused on groundwater modelling for recharge and saline intrusion risk assessment under climate change scenarios, in Cape Verde. Claudia has six years of work experience as a project engineer and researcher. She is currently a researcher at the International Groundwater Resources Assessment Centre (IGRAC), where she is involved in projects of high impact on the groundwater sector. In this interview, we talked to her about her career path, and how she has contributed to an improved and more sustainable management of groundwater resources, at a regional and global levels.
Webster is a PhD student at the University of Twente’s Faculty of Geoinformation Science and Earth Observation. His PhD thesis is entitled: Observing Zambezi Basin from Space: Satellite based bias correction for hydrological modelling: Webster is also lecturer and researcher at the University of Zimbabwe’s Construction and Civil Engineering Department. He is the coordinator of the regional master’s degree programme in Integrated Water Resources Management, a capacity building programme for the water sector in Southern and Eastern Africa. His research interests are in the areas of GIS and Earth Observation applications in water resources management, sanitation, water quality and disaster management. He is also a consultant who has been seconded as a GIS mentor to many government institutions and developmental partners in Southern Africa. Webster has over 60 publications, numerous regional and international conference papers in areas of spatial and quantitative hydrology, water resources management, quantification of water cycle components and feedbacks between climate, land-uses, water cycles and other societal influences. Webster is the Chief Editor of the Journal of Environmental Management in Zimbabwe (JEMZ).
Rebecca Gustine is currently a PhD student at Washington State University in the Department of Civil and Environmental Engineering studying civil engineering with a focus on water resources. She is also an intern at NASA JPL where she is a member of the ECOSTRESS applied science mission team working with local agencies to inform resource management and conservation efforts. We talked to her about her interdisciplinary research experiences through her undergraduate and graduate school.
Ayan Santos Fleischmann is a hydrologist with a particular interest in wetlands and large-scale basins, mainly in South America and Africa, and in the context of human impacts on water resources. His main study approaches involve remote sensing techniques and hydrologic-hydrodynamic modeling, as well as interdisciplinary collaborations with other disciplines such as ecology and social sciences. Currently, he is a researcher at the Mamirauá Institute for Sustainable Development (Tefé, Amazonas, Brazil), where he leads the Research Group in Geospatial Analysis of the Amazonian Environment and Territory. He also leads the Conexões Amazônicas initiative for science communication about the Amazon Basin. Ayan holds a PhD degree from UFRGS, with a collaborative period at Université Toulouse III – Paul Sabatier (France). His Ph. D. thesis focused on the hydrology of the South American wetlands. Ayan holds an Environmental Engineering degree from the Universidade Federal do Rio Grande do Sul (UFRGS), with a research stay at the University of East Anglia in the United Kingdom. In this interview, we talked to him about his career path, the work he has been developing in Brazil with wetlands and floods, and his work in the Amazon River basin.
Describe your professional (and/or personal) experience relating to water and space technologies.
My interest in water is a result of my background in Geology. I come from a region (Katanga Province, Congo DR) where mining is the main source of livelihood. So, I had my bachelor's degree in Geology intending to work in the mining sector after graduation. However, towards the end of the bachelor’s programme, I was exposed to the deployment of geophysical equipment for water prospecting in my department.
How do you professionally relate to water and/or space technologies?
As a hydrologist, I’ve always been fascinated by the potential of space technologies in transforming water resource management. My work integrates satellite-based Earth Observation (EO) data with hydrological modelling, particularly for drought and flood monitoring, and water availability assessments in regions with scarce ground data. EO technologies allow me to capture real-time, high-resolution data, critical for climate resilience, especially in Sub-Saharan Africa.
Could you describe how your professional and/or personal experience relate to water? Where does your interest in space technology for water come from?
I have a solid understanding of the fundamentals of hydrologic and hydraulic engineering, which is relevant to water. I studied many courses in my undergraduate and postgraduate degrees where I learned how runoff in a watershed is generated from meteorological parameters including rainfall, evapotranspiration and infiltration. I also applied my theoretical knowledge to various projects.
Hannah has always had a love for the outdoors and especially for being by the sea. From her interest in both hydrogeology and development, developed during her undergraduate studies in geology and her travels respectively, she is now undertaking a PhD in WASH, researching water security in rural communities in Kenya. Hannah undertook a six-month internship with Space4Water at UNOOSA in 2021, where she developed her understanding of the importance and application of space-based technologies in the water sector. She believes that groundwater and sanitation are two areas where space technologies are currently under-exploited but in which they hold a lot of potential.
Padmi is currently reading for her Ph.D. focusing on Nature-based Solutions (NbS) for climate change risk reduction and resilience cities. She believes NbS can reduce hydro-meteorological hazards such as floods, droughts, and landslides in the long run. It is a strategy to minimize the gaps in decarbonizing and reducing greenhouse gases and a path to Net-zero cities. NbS, are actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, benefiting people and nature (IUCN & World Bank, 2022). Ecosystem-based adaptation (EbA), ecosystem-based disaster risk reduction (Eco-DRR), ecosystem-based mitigation (EbM), and green infrastructure are some branches under the umbrella of NbS. NbS include conserving forests, mangroves, and wetland ecosystems, halting deforestation, increasing reforestation, climate-smart agriculture, and opening green spaces. According to her, space technology is integral to planning, monitoring, and analysis. Space technology today is so advanced that it can capture and predict changes in the water cycle, climate change variables and so forth. Remote sensing data and satellite-derived information are essential in obtaining accurate data on a specific site anywhere on the Earth's surface. Most recently, she has been involved in projects utilizing urban NbS such as the conservation of Ramsar-Colombo to mitigate urban floods and adapt to climate change. To conduct wetland inventories, space-based data and GIS techniques can be utilized to detect the presence of wetlands and/or water in wetlands. Though there can be some challenges encountered such as limited coverage of specific areas within the wetland, clouds often hiding images, and the low resolution of data making it difficult to differentiate floral species. Unmanned Aerial Vehicles (drones) can provide enhanced accuracy and consistency in measuring wetlands, as well as the presence of water in wetlands, using space technologies. Data and technologies from space contribute to watershed management, sediment measurements and many other environmental aspects.
Shaima Almeer is a young Bahraini lady that works as a senior space data analyst at the National Space Science Agency. At NSSA she is responsible for acquiring data from satellite images and analyzing them into meaningful information aiming to serve more than 21 governmental entities. Shaima is also committed to publishing scientific research papers, aiming to support and spread the knowledge to others.
In addition, she has recently graduated from a fellowship program at Bahrain’s Prime Minister’s Office. Shaima was selected among more than 1000 individuals to spend a year working as full-time research fellow, benefiting from advanced training in writing skills, research methods and policy analysis. The fellowship forms a core pillar of HRH the CP and PM initiative to improve national skills and support the Kingdom’s growing cadre of young government professionals. Part of the fellowship program is to work as a supervisor at the COVID-19 War Room.
Shaima has obtained her bachelor’s degree in the field of Information and Communication Technology from Bahrain Polytechnic and is currently pursuing her Msc. degree in Management Information System from the University College of Bahrain.
Prior to obtaining her bachelor’s degree, Shaima was titled as the first robotics programmer in the Kingdom of Bahrain and also won the title “Pioneering Women in Technology”. She has recently also won the “Women Innovator of the Year 2023 Award” in New Dehli.
Sarhan Zerouali became fascinated with water at a young age through learning about water scarcity around the world and about traditional methods for locating groundwater. In a space applications course Sahran then learnt about space-based technologies. He is currently working on a research project on how remote sensing and other technologies can help alleviate global challenges arising from land degradation. As an aerospace engineer, Sahran has worked with various modern technologies in his work including nanosatellites, artificial intelligence, and feature extraction algorithms.
Victor Hertel is a doctoral researcher specializing in the field of environmental risks and human security. He currently works at the German Aerospace Center (DLR) on the development of (physics-informed) deep learning methods in the context of emergency response and disaster preparedness. With an academic background in aerospace engineering, he previously worked with organizations like Human Rights Watch and the United Nations Office for Outer Space Affairs’ UN-SPIDER program, using geospatial analyses to address environmental and social challenges. His primary area of interest is data-informed decision-making and policy, with a focus on practical and implementation-oriented solutions for humanitarian emergencies caused by climate shocks and conflict.
This interview provides an in-depth look at my expertise and experience in water resource management, environmental conservation, and the integration of AI and remote sensing technologies in Burkina Faso. My passion for water management stems from my desire to protect precious resources and my belief in the essential importance of providing water to communities, a principle reinforced when I joined the Ministry of Agriculture in 2021.
As a Water and Environment Specialist at the General Office of Agro-Pastoral Development and Irrigation, I am responsible for irrigation systems, lowland rice-growing areas, and the protection of water infrastructure, while integrating innovation and remote sensing technologies to improve performance. My work also focuses on community conservation, including the removal of invasive aquatic plants from reservoirs and the treatment of gullies to combat soil erosion.
I have experience in remote sensing and AI-based applications such as ML and DL for monitoring flood risks, erosion, and irrigation systems. I use machine learning algorithms such as CNN, Random Forest, U-Net, and SVM to analyze satellite images, predict the spread of invasive plants, and optimize water use.
My research on integrating traditional knowledge into water management highlights the SoaSoagha concept, a collective work approach in Burkina Faso that promotes community conservation. Traditional rainwater harvesting, floodplain management, and small earthen dams (soussous) align with modern hydrological models, while sacred forests and customary water rights have been revealing, demonstrating indigenous methods of ecosystem protection.
My project on AI-powered aquatic invasive plant management integrates machine learning (Satellite image analysis to classify areas with a high probability of aquatic plant presence), deep learning (Precise segmentation of invasive plants, such as water hyacinth and others, in these identified areas), and community engagement to extract, classify, and convert plants into compost, biogas, and biochar. My work highlights the importance of combining technological innovation and traditional knowledge to strengthen climate resilience, ensure water security, and promote sustainable development in Burkina Faso and beyond.
Margherita is an interdisciplinary Earth scientist and drone pilot with a background in geologic and environmental sciences. She has international experience working in fields such as Earth Observation (EO), remote sensing, drones & geospatial data analysis applied to the environmental and humanitarian sectors, sustainability and climate change. Margherita is passionate about natural and climate-related technologies that can be used to develop sustainable and long-lasting solutions. She is working for a more inclusive world (Women in Geospatial+), without any sort of geographical or social barriers.
Keywords: Science communication, Climate Change, STEM, inclusivity, sustainability, nature, hydrosphere, hydrology, water risks, Earth Observation (EO), satellite data, flood modeling, vulnerability, resilience, lifelong learning
Region/Country mentioned: Temperate climates, Arid climates, Luxembourg, Niger
Relevant SDG targets: 1, 4, 6, 9, 11, 13, 17
Malek Abdulfailat has over 10 years of experience mapping and coordinating water-related projects in Palestine, Israel, and Jordon. He is currently leading a new consultation firm working on three projects: Green businesses and Water, EcoTourism and Water, and Solid waste management through women leaders. He has experience using several different space based technologies including spatial analysis and water elevation mapping. He’s realises the importance of space based technologies and believes that one factor needed to unlock their true potential is by increasing access to such tools and by better communicating their potential to policy makers.
Joshua is a Master’s student in Tropical Hydrogeology and Environmental Engineering at Technische Universität of Darmstadt. His interest is focused on hydrogeological processes, groundwater modelling, application of remote sensing and GIS in environmental studies, water management and climate change. He also works as a graduate Intern at AgriWatch BV, a company that applies geospatial solutions for precision Agriculture. As a graduate intern, he applies his interdisciplinary knowledge in developing smart-farming solutions using space-based technologies to farmers in the Twente region of the Netherlands. He deploys satellite imagery, field studies and machine learning algorithms to predict the effect of climate change on arable crops. He also utilizes precipitation data to predict rainfall events to aid farmers in determining planting and harvesting periods.
Joshua earned a bachelor’s degree in Geological Sciences, his bachelor’s thesis research aimed at carrying out paleoenvironmental reconstruction using paleocurrent indicators of water flow and direction, and application of ArcGIS to produce maps. Currently, he is working on his master’s thesis with emphasis on the impact of the ancient climate on the paleoenvironment particularly on vegetation, where he tries to research plants response to long-term greenhouse periods and short-term warming events on various timescales throughout Earth's history.
His research interests revolve around the application of space technologies in providing solutions and tackling climate change.
Describe your professional (and/or personal) experience relating to water (and space technologies). Please indicate whether an experience is related to water or to both, space and water).
I have always had an interest for science and the environment and before starting university I was introduced to hydrology which really caught my interest and led me to studying a BSc Degree in Hydrology and Geography.
What began as the development of a cubesat (BIRD-5) at the Kyushu Institute of Technology in Japan took off on a spacecraft to the International Space Station from the Mid-Atlantic Regional Spaceport at the National Aeronautics and Space Administration's (NASA's) Wallops Flight Facility in Virginia, US on 6 November 2022 (watch the video of the launch of the CRS2 NG-18 (Cygnus) Mission (Antares), in the video below the article).
On 5 June 2022, the Prize Council, under the chairmanship of the president of King Saud University Dr. Badran Al-Omar, and under the direction of PSIPW President HRH Prince Khalid Bin Sultan Bin Abdulaziz, approved the winners for the 10th Award (2022) of the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW).
The United Nations Office for Outer Space Affairs (UNOOSA), the Government of Costa Rica, and the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW) were jointly organizing a conference to promote the use of space technology in water management to the benefit of developing countries.
The Conference was heldin San José, Costa Rica, from 7-10 May 2024, hosted by and with the support of the Inter-American Institute for Cooperation on Agriculture (IICA) on behalf of the Government of Costa Rica.
The 10th Awards Ceremony of the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW) was held under the Patronage of the Custodian of the Two Holy Mosques, King Salman Bin Abdulaziz Al Saud on 13 December 2022 at the United Nations Office in Vienna, Vienna International Centre.
The Committee on the Peaceful Uses of Outer Space in its sixty-fourth session, which took place form 25 August-3 September 2021 in Vienna, adopted the below on its agenda item "Space and water":
The Committee considered the agenda item entitled “Space and water”, in accordance with General Assembly resolution 75/92.
The GCF Water Project Design Guidelines outline a structured and programmatic framework for developing climate-resilient water initiatives. To enhance water security and climate resilience, the GCF leverages innovative financing mechanisms to address critical water security areas, including:
VIENNA, 21 January (United Nations Information Service) - The United Nations Office for Outer Space Affairs (UNOOSA) and the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW) have renewed their long-standing agreement to promote the use of space-based technology for better water resource management. PSIPW is a leading scientific award that focuses on innovation to address water scarcity, offered every two years.
The Office for Outer Space Affairs and the Prince Sultan Bin Abdulaziz International Prize for Water organized the third Space4Water stakeholder meeting hosted in Vienna on 24 and 25 October 2023 in a hybrid format.
The present report describes the objectives of the meeting and includes details of attendance and a summary of the presentations, discussions and interactive sessions, as well as the conclusions.
The 2ndSpace4Water Stakeholder Meeting was hosted by the United Nations Office for Outer Space Affairswith its partner, the Prince Sultan Bin Abdulaziz InternationalPrizeforWateronline 11–12
The status and outlook of the Space4Water Project was presented at the 58th session of the Scientific and Technical Subcommittee (STSC) 2021 of the United Nations Office for Outer Space Affairs. The report is critical for outlining the motivation behind, contribution, and success of the Space4Water Project, and the Space4Water Portal as its main pillar.
On 26 July 2020, the Prize Council Chairman Dr. Badran Al-Omar, under the direction of PSIPW President HRH Prince Khalid Bin Sultan, announced the winners for the 9th Award (2020) of the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW).
PSIPW is a leading, global scientific award focusing on cutting-edge innovation in water research. It gives recognition to scientists, researchers and inventors around the world for pioneering work that addresses the problem of water scarcity in creative and effective ways.
World Water Day, celebrated each year on March 22nd, since 1993, celebrates water and raises awareness of the ongoing global water crisis. The theme this year is Valuing Water. Much more than just price, water has huge value for households, food, culture, health, education, and the environment (UN Water 2021).
The United Nations Office for Outer Space Affairs (UNOOSA) and the Space Generation Advisory Council (SGAC), are thrilled to announce the results of the 2022 edition of the Space4Youth Essay Competition!
This event is restricted to Space4Water stakeholders, featured professionals, young professionals and representatives of Indigenous communities featured on the portal.
The United Nations Office for Outer Space Affairs together with its donor, the Prince Sultan Abdulaziz International Prize for Water have jointly published an article called Cooperation in applying space technologies to water management, in the 7th edtion of A Better World.
Space4Water stakeholders, featured young professionals and professionals, join us in Vienna at the 1st Space4Water Stakeholder Meeting.
Dates and location
The workshop will take place on 27-28 October 2022 at the Vienna International Centre, with an opportunity to host it online, should COVID prevent travels in October.
Registration
To be considered for participation Space4Water stakeholders and featured professionals can register here.
This event is restricted to Space4Water stakeholders, featured professionals, young professionals and representatives of Indigenous communities featured on the portal.
Registration for speakers submitting technical presentations closes on 15 April 2023.
Registration for all other participants closes on 30 April 2023.
The United Nations Office for Outer Space Affairs (UNOOSA) and the Government of Ghana are jointly organizing a Conference with the support of the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW) to promote the use of space technology in water management to the benefit of developing countries.
The Conference will be held in Accra, Ghana, from 10- 13 May 2022, hosted by the University of Energy and Natural Resources on behalf of the Government of Ghana.
The aim of the local perspectives and case studies feature is to learn about gaps in water resource management from affected individuals, communities, civil society, professionals, researchers or organisations in the field to identify needs or potential solutions that space technologies could contribute to.
The aim of the local perspectives and case studies feature is to learn about gaps in water resource management from affected individuals, communities, civil society, professionals, researchers or organisations in the field to identify needs or potential solutions that space technologies could contribute to.
The aim of the local perspectives and case studies feature is to learn about gaps in water resource management from affected individuals, communities, civil society, professionals, researchers or organisations in the field to identify needs or potential solutions that space technologies could contribute to.
Short description of community and hydrogeology of the area
Yucatan is located in the southeast portion of Mexico. The total area of Yucatan is 124, 409 km2 and the population (by 2018) was ca. 2.1 million inhabitants. The landscape of the area is defined by a highly permeable karstic soil, a notable absence of rivers or permanent freshwater resources in the surface, and a high number of natural wells or sinkholes (locally called cenotes, from the Maya word t´sonot).
Our community is made up of direct descendents from our ancestors; Te Huia and Rangiwherowhero. Our Trust is made up of over 700 beneficiaries and is from the Ngāti Maniapoto and Ngāti Apakura tribes which has over 60,000 overall affiliated tribal members.
I should note that this interview does not aim to compare the San women of Platfontein with the Zulu women from Folweni as these are totally different communities. Also, as much as I am a Commissioner, this interview is not done on behalf of the Commission on Khoi-San Matters (CKSM) but on my personal capacity as a researcher and academic who has an interest on issues pertaining to women.
The Samburu community is the Nilotic ethnic community of North Central Kenya. They dress in red shukas and adorn themselves with necklaces, bracelets and anklets mostly from beads. They believe in God Nkai, living in the mountains. They are nomadic are pastoralists, meaning that they keep animals (e.g., cows, goats, sheep and camel) which is their main source of livelihood as they get milk, meat and blood for self consumption and/or to be sold. They move from place to place in search of pasture and water.
Short description of the Mikisew Cree First Nation community
Nestled on the northwest shore of Lake Athabasca, Fort Chipewyan is one of the most northern communities in the Regional Municipality of Wood Buffalo. Isolated by nature, Fort Chipewyan can only be accessed by plane or boat in the summer and by a winter road in the winter.
Photo: Tääk ë´mëj (grandmother) cleansing her wooden cane. In Tamazulápam women guide the spiritual life of people in the community and teach younger generations the rituals and forms to interact with nature. Credits: Joselí Martínez-Vidal, Young Ëyuujk man from Tamazulápam del Espíritu Santo, Mixe, Oaxaca.
The municipality of San José Poaquil was founded on November 1, 1891. It is located in the department of Chimaltenango with a territorial extension of approximately 100 km² and has almost 30 000 inhabitants. It is one of the 16 municipalities that make up the department of Chimaltenango. It is located in the west of the Republic of Guatemala at a distance of 101 kilometers from the Capital City and distance 47 kilometers from the Departmental Capital.
AquaWatch, the Group on Earth Observations (GEO) water quality initiative is developing and building the global capacity and utility of EO-derived water quality data, products and information to support effective monitoring, management and decision making. GEO AquaWatch seeks nominations of individuals to serve on our Management Team for the 2023-2026 triennium. Early Career Scientists are encouraged to apply. These roles are unpaid and voluntary.
Floods and landslides are the first and fourth most frequent disasters around the world (Petley, 2012). There are several examples of downstream flooding caused by massive mudslides where rapid mapping is an indispensable tool for supporting disaster management activities by civil protection authorities.
This module consists of four Courses with mainly theoretical background and one Course with a final assignment. Following the DPSIR structure (Driving forces, Pressures, State, Impact and Response), we will look first at some causes and consequences of water pollution and then learn how to measure and evaluate water pollution.
This course provides basic knowledge about MODFLOW and Model Muse, which can be used to develop, run, and post-process models. MODFLOW in Model Muse combines many of the capabilities found in MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-LGR, and provides a platform for adding packages.
Prolonged drought can result in economic, environmental, and health-related impacts. In these training webinars, participants will learn how to monitor drought conditions and assess impacts on the ecosystem using precipitation, soil moisture, and vegetation data. The training will provide an overview of drought classification, as well as an introduction to web-based tools for drought monitoring and visualization.
Objective:
By the end of the training, participants will be able to:
Waterborne diseases such as cholera, diarrhea, hepatitis A, typhoid, and polio are caused by contaminated drinking water and poor sanitation (World Health Organization). Inadequate management of urban, industrial, and agricultural wastewater worsens water quality in water bodies, introducing chemicals and exacerbating growth of pathogens in water. Every year, waterborne diseases are responsible for approximately one million deaths, the majority of which are children under the age of five.
Natural lakes and man-made reservoirs are a part of Earth’s surface water. Freshwater lakes and reservoirs are used for drinking water, fishing, and recreational activities. Aside from the aesthetic and scenic value added by their presence, lakes support surrounding plant and aquatic ecosystems and wildlife. A variety of factors affect lakes and reservoirs, including climate variability and change, land use, and other watershed activities influencing surface runoff and groundwater.
This online training introduces participants to the data and applications of the Global Precipitation Measurement (GPM) mission. GPM is an international satellite mission that provides next-generation observations of rain and snow worldwide every three hours.
The SDG Academy and the Stockholm International Water Institute have come together to offer this MOOC on some of the most important water issues. They focus on the key role water plays in the achievement of the Sustainable Development Goals, not least SDG 6, about sustainable water and sanitation for all. The course intends to explain the global water crisis through linkages between water, environment, and societal development, focusing on how to tackle issues such as growing water uncertainty and deteriorating water quality.
Le cours comprend 7 leçons. Chaque leçon présente un cas d'application, suivi d'une partie théorique SIG illustrée avec des vidéos. Ceux-ci seront suivis par un tutoriel pratique présentant les nombreuses fonctionnalités offertes par QGIS. Les leçons se terminent par des recettes de style des cartes qui fournissent une base solide dans les capacités cartographiques robustes de QGIS. Des astuces telles que les remplissages suivant la forme de polygone inversé, les paramètres d'étiquette avancés et les modes de fusion sont abordées.
Water Productivity and Water Accounting using WaPOR (the portal to monitor Water Productivity through Open-access of Remotely sensed derived data) is an open online course targeting practitioners and academicians who are working in water resources management and related fields and have interest in applying open access remote sensing data and other open data to assess the water resources situation and water productivity and the extent to which water productivity increases have an effect on different water users in a river basin context.
Polluted water influences all aspects of life, including people, animals, and the environment. NASA satellite observations provide near real-time information about water quality. This freely available data can help decision-makers in their work. Satellite data can have applications for managing drinking water, public health, and fisheries.
Water quality monitoring in coastal ocean estuaries and inland lakes is critical for ecosystems and fisheries management and safe drinking water. Remote sensing of water quality parameters has conventionally used data from multispectral sensors (e.g., Aqua-MODIS, Landsat-OLI, Sentinel-3 OLCI, Sentinel-2 MSI) with a limited number of spectral bands.
Hydrologic modeling is useful for flood, drought, and water resources management. The Variable Infiltration Capacity (VIC) Model uses inputs to better understand hydrological processes in near real-time. Many of the inputs are available from NASA remote sensing and Earth system models, allowing the model to provide soil moisture, evapotranspiration, and runoff as outputs. Together with precipitation data, these outputs provide quantitative assessment of a regional water budget.
These webinars are available for viewing at any time. They provide basic information about the fundamentals of remote sensing, and are often a prerequisite for other ARSET trainings.
These training webinars will focus on integrating NASA Earth observations into water quality monitoring decision making processes. This will include a brief overview of data products used for water quality monitoring, an overview of aquatic remote sensing-specific criteria, methods and best practices, obtaining NASA Earth observation data for water quality monitoring, and practical skill building in image processing for water quality monitoring of coastal and larger inland water bodies.
This learning platform helps users understand the significance of Earth observations, explore Digital Earth Africa datasets through an interactive map, and get started on the basics of python coding for spatial analysis.
Digital Earth Africa makes Earth observation (EO) data readily available, delivering decision-ready products to the African continent. Data generated by Digital Earth Africa will provide valuable insights for better decision-making across many areas, including resource management, food security and urbanisation.
Develop skills to use remote sensing for land cover classification, estimating evapotranspiration, water productivity, irrigation performance assessment & irrigation water accounting.
Rivers are a major source of freshwater. They support aquatic and terrestrial ecosystems, provide transportation, and generate hydropower. Managing river basin watersheds is critical for developing policies for sustainable water allocation and development. Over the online course of four sessions, this introductory webinar series will address using satellite data and Earth system modelling data sources to estimate surface water budgets
In this self-paced online course, the participants will be introduced to the Programming for Geospatial Hydrological Applications. Participants will learn an essential skill for researchers dealing with (spatial) data. With scripting participants will be able to better control analysis using command line tools. They can also automate their procedures by writing batch scripts. Furthermore, participants can process their data and make models using Python and its useful libraries
Welcome to the open access course Use of FAO WaPOR Portal from IHE Delft Institute for Water Education and the Food and Agricultural Organization of the United Nations (FAO). WaPOR is the portal to monitor Water Productivity through Open-access of Remotely sensed derived data and has been developed by FAO. The FAO’s WaPOR programme assists countries in monitoring water productivity, identifying water productivity gaps, proposing solutions to reduce these gaps, and contributing to a sustainable increase in agricultural production.
This learning platform helps users understand the significance of Earth observations, explore Digital Earth Africa datasets through an interactive map, and get started on the basics of python coding for spatial analysis.
Digital Earth Africa makes Earth observation (EO) data readily available, delivering decision-ready products to the African continent. Data generated by Digital Earth Africa will provide valuable insights for better decision-making across many areas, including resource management, food security and urbanisation.
Integrated Water Resources Management requires exchange of data and information among sectors. Often data is stored in files on harddisks, CD-ROMs or DVDs. This makes it hard to find the data. In addition, metadata is often lacking, which makes it hard to evaluate the quality of the data and to reuse the data. A Spatial Data Infrastructure (SDI) can enable water sector organisations to improve the exchange of data within and among organisations.
The Jupyter notebook demonstrates how EOdal can be used for disaster relief after the break of the Kachowka using open-source Earth Observation data.
On June 6, 2023, the Kakhovka Dam in Ukraine broke. We do not yet know who or what was responsible for the collapse of the dam. What we do know, however, are the devastating consequences for the region downstream - especially for the local population.
Storm surges and tidal waves are global phenomena that considerably affect human populations in coastal and island regions. According to the Guide to Storm Surge Forecasting published by the World Meteorological Organization in 2011, storm surges can be defined as “oscillations of the water level in a coastal or inland body of water in the time range of a few minutes to a few days, resulting from forcing from atmospheric weather systems. According to this definition, the so-called wind waves, which have durations on the order of several seconds, are excluded”.
Remote sensing technologies can support all stages of the disaster management cycle. In the prevention and preparedness phases, they often find their application in risk assessments, scenario modelling and early warning. This UN-SPIDER Recommended Practice explains how remote sensing data about recurring floods, information about infrastructure and socio-economic data can be integrated using free and open source software to support prevention and preparedness efforts.
Mapping the extent of a natural hazard (e.g., assessing areas with a high risk) or disaster is a first step in disaster risk management and emergency response. Subsequently, exposure mapping enables the estimation of the impact of hazards or disasters, for example, regarding the number of affected inhabitants or infrastructure. The following practice shows the use of Quantum GIS to analyze a disaster extent map in combination with auxiliary data such as population or land cover data.
Flood hazard assessments are critical to identifying areas at risk and taking relevant preparation and mitigation measures to address the hazard. Using the HEC-RAS 2D model for preparing flood hazard maps, this Recommended Practice explains how to identify flood-prone areas and exposed infrastructure. Through its focus on the prevention and mitigation stages of the disaster management cycle, it complements the Recommended Practice on Flood Mapping and Damage Assessment with Sentinel-2, also developed by SUPARCO.
This workshop has brought together an international expert group of remote sensing (RS) specialists, water resources experts and water quantity modelers. This workshop has focused on:
Water-ForCE is organising a community virtual workshop of experts in calibration and validation of Remote Sensing Products. This workshop is invitation-only and requires registration. The precise timing of the session slots (2-3 hours each) will be communicated once we have filled all programme slots. Each session will nevertheless take place in the early afternoon (no earlier than 1pm Central European Time) to allow speakers across the globe to join.
Water-ForCE recognises that it is essential to undertake the next phase of research and innovation in Earth Observation in partnership with industry and policy sectors, to design products which can effectively address our immediate environmental and climate challenges.
This learning platform helps users understand the significance of Earth observations, explore Digital Earth Africa datasets through an interactive map, and get started on the basics of python coding for spatial analysis.
Digital Earth Africa makes Earth observation (EO) data readily available, delivering decision-ready products to the African continent. Data generated by Digital Earth Africa will provide valuable insights for better decision-making across many areas, including resource management, food security and urbanisation.
The AfriAlliance project aims to better prepare Africa for future climate change challenges by having African and European stakeholders work together in the areas of water innovation, research, policy, and capacity development. Rather than creating new networks, the 16 EU and African partners in this project are consolidating existing ones, consisting of scientists, decision makers, practitioners, citizens, and other key stakeholders, into an effective, problem-focused knowledge sharing mechanism.
Due to climate change, population growth, increasing urbanization etc., many lakes, rivers, wetlands and coastal basins globally are becoming more stressed from pollution, depleting water resources, global warming, increased floods and droughts, and increasing ecological and biological disruptions.
Water utilities and the populations they serve are facing a range of dynamic pressures, as catchment areas are affected by global climate change and local land use changes, with consequences on water sources upstream. How can we use satellite information to manage upstream processes that could affect the quality of drinking water sources?
This webinar is meant to contribute to the AMCOW Pan African Groundwater Programme (APAGroP) and its various capacity building actions. The webinar is intended to support African Member States and other relevant stakeholders to develop and implement evidence-based groundwater policy and practice in Africa for improved lives and livelihoods.
Communities need to understand how land cover affects water quality. This webinar provides information about NOAA’s coastal land cover data (also known as “C-CAP data”). Several tools make these data easier to use, including the Land Cover Atlas, an online viewer used to analyze land cover changes by county or watershed. Also covered: a step-by-step guidance document that helps users understand key water quality indicators.
Water-ForCE Webinar: SDG 6 clean water and sanitation
While substantial progress has been made in increasing access to clean drinking water and sanitation, billions of people—mostly in rural areas—still lack these basic services.
During this webinar, we will be focusing on the targets of the Sustainable Development Goal no 6 (SDG6) on clean water and sanitation:
The first GEO Knowledge Hub (GKH) webinar, on the 24th February 2021, introduced the GKH in its current stage of development.
Objective
The goal was to provide a user perspective based on input from the Knowledge Providers, notably to outline GKH capabilities and benefits to the GEO community.
In this SIWI World Water Weekworkshop organised by adelphi and IHE Delft, experts from the diplomacy, development, security, climate change and water communities discussed the conditions under which specific diplomatic tools can be used by riparian and non-riparian countries to shape regional cooperation to address climate, and other security and development challenges, such as migration.
Groundwater makes up roughly 30% of global freshwater. It also provides drinking water for the world’s population, and irrigation for close to 1/3rd of global agricultural land. Because of this level of reliance, monitoring groundwater is crucial for water resources and land management. The Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) missions from NASA and the German Research Centre for Geosciences (GFZ) provide large-scale terrestrial water storage estimation from mid-2000 to present.
Data recipes are video tutorials that include step-by-step instructions to help users learn how to discover, access, subset, visualize and use Earth science data, information, tools and services. These recipes cover many different data products across the Earth science disciplines and different processing languages/software.
The 7th International Symposium on Knowledge and Capacity for the Water Sector will bring together sector organizations, knowledge institutes and policy makers to explore the significant shifts that have taken place in the water sector over the past decades.
Date: 2 July 2025 - 4 July 2025 Location: Hybrid (IHE Delft & online)
The Congress brings together city officials, academics, business executives, water experts, and students from the major cities in the world that are likely to face water challenges in the next 24 – 36 months.
This event is being held virtually in conjunction with the United Nations General Assembly High-Level Meeting on the “Implementation of the Water-Related Goals and Targets of the 2030 Agenda.”
register here until 21 August 2022 - if you would like to be considered for funding
In many places around the world women are responsible for water collection, a responsibility that globally takes them 200 million hours annually. It often leaves them with little to no time for school, work or to spend time with their family. Furthermore, indigenous communities' cultural heritage and knowledge about natural resources, including water, urgently needs to be considered and protected.
This website includes tools and resources for developing basin report cards. It includes reports that incorporate satellite imagery to measure environmental indicators and change over time.
With the University of Maryland Center for Environmental Science (UMCES), we are developing, packaging, and sharing a process that helps stakeholders create science-based report cards in their own basins with the right buy-in on-the-ground and credibility globally, so they can better manage resources for the protection of fresh water they depend upon.
Currently, WHOS makes available three data portals allowing users to easily leverage common WHOS functionalities such as data discovery and data access, on the web by means of common web browsers. For more information on WHOS data and available tools, please refer to the Section WHOS web services and supported tools.
WHOS-Global Portal provides all hydrometeorological data shared through WHOS. WHOS-Global Portal is implemented using the Water Data Explorer application.
Water problems around the world are increasing; however, information useful for decision makers within the water sector and related to the water sector seems to be decreasing. Solving water problems requires information from many disciplines, and the physical accounts (describing sources and uses of water) are the most important foundation. The information has to be coherent and harmonized in order to provide an integrated picture useful for the assessment of the problems.
The development of the LGBM was made by quantifying flows and distribution of groundwater in a local aquifer, with the ultimate goal to influence groundwater literacy.
e-shape is a unique initiative that brings together decades of public investment in Earth Observation and in cloud capabilities into services for the decision-makers, the citizens, the industry and the researchers. It allows Europe to position itself as global force in Earth observation through leveraging Copernicus, making use of existing European capacities and improving user uptake of the data from GEO assets. EuroGEO, as Europe's contribution to the Global Earth Observation System of Systems (GEOSS), aims at bringing together Earth Observation resources in Europe.
The Water-ForCE project will co-create a Roadmap for the development of the next phase of Copernicus Inland Water Services with the space sector, research community, policy, industry and third sector. The Roadmap will be benchmarked against community requirements, recommending services that should be delivered centrally by Copernicus and innovation opportunities that are better suited for business and research development.
To date, hydrological issues are playing a key role in the implementation of the goals in which water has a crosscutting role linked to many other Sustainable Development Goals (SDG’s) set in the 2030 Agenda. According to SDG 6, there is a need to monitor eight different interrelated targets globally. At present, several global tools and initiatives for water monitoring exist. A prerequisite for their implementation is to have a thorough knowledge of the system and a consistent database, usually collected at a country and global scale worldwide.
The AfriAlliance project aims to better prepare Africa for future climate change challenges by having African and European stakeholders work together in the areas of water innovation, research, policy, and capacity development. Rather than creating new networks, the 16 EU and African partners in this project are consolidating existing ones, consisting of scientists, decision makers, practitioners, citizens, and other key stakeholders, into an effective, problem-focused knowledge sharing mechanism.
River and floodplain landscapes are constantly undergoing change due to natural and manmade processes putting pressure on fluvial systems, such as reservoirs, intensive agriculture, high-impact repetitive droughts and floods and the overall effects of climate change. All these bring about considerable changes, some of which irreversibly degrade ecosystem services, local economies and impact lives, particularly in sensitive transitional zones such as the Sahel region in Africa and its Niger River Basin (NRB).
The Mekong Dam Monitor is an online platform which uses remote sensing, satellite imagery, and GIS analysis to provide near-real time reporting and data downloads across numerous previously unreported indicators in the Mekong Basin. The platform is freely available for public use on the Mekong Water Data Initiative website and all research inputs are public-access resources.
Decision-makers are faced with the constant challenge of maintaining access to and understanding new technologies and data, as information and communication technologies (ICTs) are constantly evolving and as more and more data is becoming available. Despite continually improving technologies, informed decision-making is being hindered by inadequate attention to enabling conditions, e.g. a lack of in-service education and professional training for decision-makers.
In tandem with the monumental increase in geo-data availability from remote sensors, field sensors and various publicly available environmental datasets, state-of-the-art geoinformatics algorithms have evolved to harness earth science data as never before. In the field of computational hydrology, these processes have yielded global information in fine detail, and of exceptional precision.
Egyptian Space Agency is a Governmental Organization that's aiming at acquiring Space Technology and Satellite Launching capabilities towards the accomplishment of The National Sustainable Development Strategy "Egypt-SDS 2030" objectives.
The University of Stirling was founded by Royal Charter in 1967 as the first genuinely new university in Scotland for over 400 years and embraces its role as an innovative, intellectual and cultural institution. A research-led university with an international reputation for high-quality research directly relevant to society’s needs, Stirling aims to be at the forefront of research and learning that helps to improve lives. The University works closely with its stakeholders in policy, practice and industry to facilitate this and enhance the relevance and impact of its research.
The Institute of Forestry, Pokhara Campus (IOF-PC), Quality Assurance Accreditation (QAA) certified institution by the UGC, Nepal in September 2022, was established in 1981 as the Central Campus of the Institute of Forestry, one of the five technical institutes under Tribhuvan University, Nepal. The IOF, founded as Nepal Forestry Institute in Singh Durbar, Kathmandu, in 1947, was shifted to Suping (BhimPhedi) in 1957 and again to Hetauda in 1965.
The Kenya Space Agency (KSA) was established under the Ministry of Defence, as the successor to the National Space Secretariat (NSS), by Executive Order through Legal Notice No. 22 of 7th March 2017 with the mandate to promote, coordinate and regulate space related activities in the country.
Vision: The vision of the Agency is to be the premier Space Agency in promotion of access and effective utilization of Space Economy for national sustainable development.
The United Nations University Institute on Comparative Regional Integration Studies (UNU-CRIS) is a research and training institute of the United Nations University. UNU is a global network of institutes and programs engaged in research and capacity development to support the universal goals of the UN. It brings together leading scholars from around the world with a view to generate strong and innovative knowledge on how to tackle pressing global problems. UNU-CRIS focuses on the study of processes of global cooperation and regional integration and their implications.
The Inter-American Institute for Cooperation on Agriculture (IICA) is the specialized agency for agriculture of the Inter-American System that supports the efforts of Member States to achieve agricultural development and rural well-being.
G. B. Pant University of Agriculture and Technology, also known as Pantnagar University, is the first agricultural university in India. The University lies in the campus town of Pantnagar in Kichha Tehseel and in the district of Udham Singh Nagar, Uttarakhand. The university is regarded as the harbinger of the Green Revolution in India. Pantnagar University is regarded as a significant force in the development and transfer of High Yielding Variety of seeds and related technology.
The Energy, Water, & Sustainability Program at the Stimson Center addresses important and timely policy issues and technical opportunities concerning energy, water, and sustainable development in the Global South from a multidisciplinary perspective.
Our work on transboundary river basins identifies pathways towards enhancing water security and optimizing tradeoffs between water, energy, and sustainable development options in the Mekong, Ganges-Brahmaputra, Indus, Aral Sea and Euphrates-Tigris river basins.
mWater is a woman-owned small business with a non-profit arm for projects with international organizations and foundations, and a for-profit arm for US Government and private sector clients. Our staff includes senior experts with advanced degrees in environmental engineering, public health, and technology, allowing mWater to create innovative, data-driven management approaches for our partners and all users of the free mWater technology platform.
WPS is a partnership of research and civil society organizations that work together towards identifying water-related risks of human insecurity, fragility and conflict, and towards developing analytical and dialogue tools for preventing and mitigating such conflicts. WPS is a collaboration between the Netherlands Ministry of Foreign Affairs and a consortium of six partners: IHE Delft (lead partner), World Resources Institute (WRI), Deltares, The Hague Centre for Strategic Studies (HCSS), Wetlands International and International Alert.
The Center for Space Science and Geomatics Studies (CSSGS) is the research center with a focus on space science and geomatics applications in the following themes: disaster management, water quality, glacier, precision agriculture, air pollution, water pollution. Research areas also focus on the application of Global Navigation Satellite System (GNSS) in forestry, agriculture and engineering.
DeepWaters AI uses satellite data and AI to find underground drinking water and pipe leaks. It has created a map of the Earth’s underground water, with up to 98% accuracy. It was awarded a European Space Agency AI Kickstart contract in 2018. DeepWaters AI is supported by Esri, Amazon and Nvidia startup programs. It is a UK based social impact startup, that donates 51% of profits to water philanthropy. DeepWaters AI combines neural networks with ESA Sentinel 1 & 2 satellite data.
The National Water Agency (ANA) is legally liable for implementing the National Water Resources Management System (SINGREH), created to ensure the sustainable use of our rivers and lakes for the current and future generations. This implies regulating the use of water according to the mechanisms established by Law No.
Satsense Solutions Limited is a start-up company that uses satellite earth observation to develop business and governance solutions addressing the challenges of resource management, climate change and sustainable development. It has developed and deployed several applications in the Water Resources, Hydropower, Mining and Infrastructure sectors. These include assessments of eutrophication levels in lakes and reservoirs and sedimentation rates at hydropower plants. Identification of pollution in rivers, acid mine drainage and tailings at mining sites.
The Organisation is a Government agency in charge of providing portable drinking water and water related sanitation services to rural communities. The agency is incharge of achieving WASH related SDGs by 2030 at the remote communities in Ghana.
mWater is an operating system for digital governance used by governments, civil society organizations, and water and sanitation service providers in over 190 countries. The platform's free features allow users to collect data using smartphones, bring in data from Earth observations and other sources, and create effective analytics and visualizations to help prioritize interventions. mWater is designed to facilitate collaboration and longitudinal monitoring of individual pieces of infrastructure as well as entire water systems.
A need to monitor precipitation extremes from space is widely recognized, especially for regions where ground-based observations are limited or unavailable. The Japan Aerospace Exploration Agency (JAXA) has developed the Global Satellite Mapping of Precipitation (GSMaP) in the Global Precipitation Measurement (GPM) mission. The JAXA participated in the Space-based Weather and Climate Extremes Monitoring (SWCEM) of the World Meteorological Organization (WMO) by providing the GSMaP Near-real-time Rainfall Product.
ISME-HYDRO is a platform that helps monitor water resources of dams, thus enabling water resources managers to better execute their duties. It employs linked data infrastructure integrating in-situ measurements, satellite data, GIS data, domain knowledge, deep learning, and provides capabilities of forecasting of water volumes, of alerting for hazardous situations, of interaction with the data through four kinds of search and GIS interactivity. The platform is easily extendable and customizable.
The AfriAlliance project aims to better prepare Africa for future climate change challenges by having African and European stakeholders work together in the areas of water innovation, research, policy, and capacity development.
The Freshwater Ecosystem Explorer is an open access geo-spatial data platform, providing accurate, high-resolution, geospatial depicting the extent to which different types of freshwater ecosystems change over time, within every country in the world.
mWater is an operating system for digital governance used by governments, civil society organizations, and water and sanitation service providers in over 190 countries. The platform's free features allow users to collect data using smartphones, bring in data from Earth observations and other sources, and create effective analytics and visualizations to help prioritize interventions. mWater is designed to facilitate collaboration and longitudinal monitoring of individual pieces of infrastructure as well as entire water systems.
mWater is an operating system for digital governance used by governments, civil society organizations, and water and sanitation service providers in over 190 countries. The platform's free features allow users to collect data using smartphones, bring in data from Earth observations and other sources, and create effective analytics and visualizations to help prioritize interventions. mWater is designed to facilitate collaboration and longitudinal monitoring of individual pieces of infrastructure as well as entire water systems.
This code, accessible here https://github.com/mhpi/hydroDL, contains deep learning code used to modeling hydrologic systems, from soil moisture to streamflow, from projection to forecast. The starting core of the code is a highly efficient LSTM code based on cudnn.
The work supported the publication of these papers:
Imagery from Earth observing (EO) satellites combined with environmental data about climate, topography and soils holds great potential to advance our knowledge about the dynamics of our planet. Still, the handling and analysis of these data sources is cumbersome and presents a high barrier to entry leaving the potential of EO data underexploited.
The solution approach begins with identifying the region's main rivers and understanding their hydrology using mapping and geoprocessing tools. After understanding the hydrograph of the area, high-resolution satellite images are utilized to identify upstream potential pollution sources.
Identify the region's main rivers and understand their hydrology (completed);
Identify the region's potential flood areas using H.A.N.D.;
Build a hydrography dataset (completed);
2. Locate potential contamination sources
Use QGIS and Google Earth high-resolution satellite images to locate potential contamination sources
Figure 1: Identifcation of potential sources of pollution upstream the communities land.
Take a field trip to confirm the potential sources of contamination (in progress)
Figure 2: Map showing the potential source of contamination near the river.
3. Select the appropriate monitoring method (in progress)
Media for monitoring (water, sediment, suspended particles)
Sampling locations, sampling frequency
Physical, chemical and biological parameters for measurement
Weather
To ensure the safety and quality of drinking water, Drinking Water Standards (Standards) define Maximum Acceptable Values (MAVs) for a variety of contaminants that pose a threat to its quality and safety. These values are based on the World Health Organization's guidelines.
The Drinking-water Standards for New Zealand are listed here.
To address the challenge of water security in Bahrain, this solution integrates space-based technologies and geospatial analysis to identify and monitor potential water resources, particularly shallow groundwater. The methodology involves the use of satellite-derived datasets and terrain modelling tools to analyse hydrological behaviour, soil moisture, and elevation-based drainage characteristics.
Three main data sources were incorporated into the solution:
GRACE (Gravity Recovery and Climate Experiment) data is used to assess changes in terrestrial water storage at the regional scale by detecting gravity anomalies related to mass variations in groundwater. GRACE data is retrieved and visualised through platforms such as Google Earth Engine and ArcGIS Pro, enabling temporal monitoring of water resources.
HAND (Height Above Nearest Drainage) modelling was employed to identify topographic wetness and assess the hydrological potential of the landscape. HAND normalises elevation relative to the nearest drainage, highlighting areas where water is more likely to accumulate or infiltrate. This method supports the identification of suitable zones for groundwater recharge, such as infiltration basins or artificial wetlands, especially in an arid environment like Bahrain. The HAND model was derived using the GLO-30 Copernicus DEM (2023_1 DGED version), processed through the TerraHidro platform, and included the generation of essential layers such as flow direction (D8), contributing area (D8CA), slope, and drainage networks with thresholds of 10, 100, and 300 pixels.
Soil moisture analysis was conducted using two approaches:
SAR (Synthetic Aperture Radar) data from the Sentinel-1 constellation, which provides all-weather, day-and-night measurements of surface moisture conditions.
Optical-based soil moisture estimation, calculated from Landsat-8 imagery using vegetation and thermal indices (e.g., Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST)). This dual approach allows for consistent monitoring of surface moisture, which is crucial for assessing recharge potential and supporting irrigation planning.
Together, these tools provide a multi-faceted view of Bahrain's hydrological landscape, enabling decision-makers to strategically identify areas with groundwater potential and implement more sustainable water resource management practices.
Solution requirements
Gravity Recovery and Climate Experiment (GRACE)
GRACE is a joint mission by the National Aeronautics and Space Administration (NASA) and the German Aerospace Center (DLR) to measure Earth's gravity field anomalies from its launch in March 2002 to the end of its mission in October 2017. The GRACE Follow-On (GRACE-FO) is a continuation of the mission launched in May 2018. GRACE provides information on how mass is distributed and is varied over time through its detection of gravity anomalies. Because of this, a significant application of GRACE is groundwater anomalies detection. Hence, GRACE data has been explored as a solution for this challenge.
Two software platforms have been utilised to download and visualise GRACE data for Bahrain:
Google Earth Engine (GEE): A cloud-based platform that facilitates remote sensing analysis with a large catalogue of satellite imagery and geospatial datasets. The platform is free for academic and research purposes.
QGIS: A desktop application that allows the exploration, analysis and visualisation of geospatial data. This application is open source.
Height Above Nearest Drainage (HAND)
The Height Above Nearest Drainage (HAND) is a terrain model that normalises elevation data relative to the local drainage network, offering a hydrologically meaningful representation of the landscape. By calculating the vertical distance between each point on the terrain and the nearest drainage channel, HAND allows for the identification of topographic wetness zones and the classification of soil water environments. It has shown strong correlation with water table depth and has been effectively validated in various catchments, particularly in the Amazon region. The HAND model supports physically based hydrological modelling and has broad applicability in areas such as flood risk assessment, soil moisture mapping, and groundwater dynamics, using only remote sensing-derived topographic data as input.
Soil moisture using Synthetic Aperture Radar (SAR) imagery
SAR data from Sentinel-1 constellation was used to generate relative soil moisture values. Seninel-1 is a radar-based satellite which acquires data with 6 days repeat cycle, and is neither affected by clouds, weather nor time of the day. Being a dual-polarimetric platform, it acquires data in VV (Vertical-transmit and Vertical received) polarization and VH (Vertical-transmit and Horizontal received) polarization. The data was analysed in GEE.
Soil moisture using multispectral and thermal imagery (Optical)
The data utilised to detect soil moisture are satellite imagery from Landsat-8 downloaded through GEE. Landsat-8 provides multispectral and thermal satellite imagery with 16 days repeat cycle. The specific bands required to calculate soil moisture index are the red, near-infrared bands and thermal infrared bands.
Solution outline and steps
GRACE
Figure 1 illustrates the steps taken to extract the recent GRACE Monthly Mass Grids Version 04 - Global Mascon (CRI Filtered) Dataset from GEE.
Figure 1. Download steps for GRACE Data
HAND
The elevation data downloaded and processed for the region of interest were derived from the GLO-30 dataset. The Copernicus DEM, a Digital Surface Model (DSM), represents the Earth's surface, including features such as buildings, vegetation, and infrastructure. This DSM is based on the WorldDEM product, which has undergone extensive editing to ensure the flattening of water bodies, consistent river flow representation, and correction of terrain anomalies, including shorelines, coastlines, and features like airports. The WorldDEM itself was generated using radar satellite data from the TanDEM-X mission, a Public Private Partnership between the German Aerospace Centre (DLR) and Airbus Defence and Space. The GLO-30 data used in this work corresponds to the 2023_1 version of the Defence Gridded Elevation Data (DGED), provided via ESA’s https PRISM service and made accessible through OpenTopography.
The following products were processed using the TerraHidro software from the GLO-30 dataset: removepits.tif, d8.tif, d8ca.tif, slope.tif, drainage_10.tif, drainage_100.tif, and drainage_300.tif, as well as the HAND-derived products hand_10.tif, hand_100.tif, and hand_300.tif. Each product has a specific role in hydrological modeling:
removepits: This process modifies the original Digital Elevation Model (DEM) to eliminate depressions or pits that are not hydrologically realistic, ensuring that every cell has a defined downstream flow direction.
d8: The D8 (Deterministic 8) flow direction model calculates the steepest descent path from each pixel to one of its eight neighbors, indicating the primary direction of surface water flow.
d8ca: The D8 Contributing Area represents the number of upstream cells that contribute flow to each cell, allowing the identification of areas of potential accumulation and drainage.
slope: This product calculates the slope of the terrain in degrees, essential for understanding runoff velocity and erosion potential.
drainage_10, drainage_100, and drainage_300: These are drainage networks derived from the D8 contributing area, using threshold values of 10, 100, and 300 pixels, 0.9ha, 9ha and 27ha, respectively. They represent streams formed when the contributing area exceeds the specified number of pixels, with higher thresholds resulting in more generalised drainage networks.
From these products, the following HAND (Height Above Nearest Drainage) models were generated:
hand_10, hand_100, and hand_300: These datasets represent the vertical distance (in meters) from each pixel to the nearest drainage cell identified in the corresponding drainage network (with thresholds of 10, 100, and 300 pixels, respectively). These HAND maps are used to characterise terrain wetness, identify flood-prone areas, and support soil moisture and hydrological modeling.
Several steps were executed to derive the mean soil moisture conditions over the study area between 2017 and 2024. A step-by-step guide is shown in Figure 2. The values of soil moisture estimated is relative to the maximum soil moisture recorded in the region such that the wettest will be the maximum and the driest will be the minimum. These are used to normalise the final output into values between 0 and 1 where 0 is the driest and 1 is the wettest.
Figure 2. Processing steps for SAR soil moisture
Soil moisture (Optical)
Similar to the soil moisture calculation with SAR, an average of the soil moisture from 2017 to 2024 has been derived. The interrelations between the derived vegetation through the Normalized Difference Vegetation Index (NDVI) as well as Land Surface Temperature (LST) have been the basis for generating the soil moisture map. Figure 3 demonstrates the steps followed to generate optical soil moisture.
Figure 3. Processing steps for optical soil moisture
Shallow groundwater locations/recharge areas
To estimate potential suitable locations for shallow groundwater or groundwater rechange, the results from the HAND, SAR and optical soil moisture have been aggregated to formulate a final classification map. To perform this, the following has been done:
Classification of HAND, SAR and optical soil moisture results to ranges from 1-5, with 5 being the most suitable region based on the related values.
Spatial modelling of these three classifications to formulate a final suitability value from 1-5 with 5 being the most suitable region overall. HAND has been given a weightage of 50 per cent while SAR and optical soil moisture have been given a weightage of 25 per cent each to represent 50 per cent overall for soil moisture.
Map generation
Different maps have been generated for each component of this solution (HAND, SAR soil moisture, optical soil moisture, shallow groundwater locations/recharge areas). The subsequent steps illustrate the steps needed to develop the maps for this solution:
A basemap is added to the map for visualisation purposes. This is done through using the QGIS plugin called QuickMapServices. To install plugins, go to the Plugins tab and select Manage and Install Plugins.
Figure 4. Map generation - Step 1
In the search box of the Plugins window, search for QuickMapServices and install the plugin.
Figure 5. Map generation - Step 2
The plugin logo should appear in the QGIS panel. Click on the logo for Search QMS Panel. This label would appear if you hovered over the logo.
Figure 6. Map generation - Step 3
In the Search QMS Panel on the right, search for Google Satellite and add the basemap. It should appear in the list of layers.
Figure 7. Map generation - Step 4
Now we have a base layer that we can place our analysis on top of. Add the layer to the QGIS project if it is not already added. This can be done through drag and drop.
Figure 8. Map generation - Step 5
Right click on the layer and select Properties to adjust visualisation parameters.
Figure 9. Map generation - Step 6
In the Layer Properties window, click on Symbology and discover the most appropriate visualisation method for the data layer. This is an example for the set classifications for the HAND.
Figure 10. Map generation - Step 7
Once the layer visualisation has been set, the map layout can be generated. Go to Project > New Print Layout and name the layout.
Figure 11. Map generation - Step 8
Figure 12. Map generation - Step 8
In the Layout window, items such as the layers map, legend, scales can be added. This is accessed through the Add Item tab.
Figure 13. Map generation - Step 9
The items added to the map can then be moved and arranged by selecting the Edit tab then either Select/Move Content to move the locations of the specific content or Move Content to move the position/scale of the map.
Figure 14. Map generation - Step 10
Each item’s properties such as size, colour and fonts can also be edited in the Item Properties panel in the right.
Figure 15. Map generation - Step 11
The final generated layout is then exported in the desired format: png, pdf or svg. This is achieved through clicking on the Layout tab.
Figure 16. Map generation - Step 12
Results and maps
GRACE
The GRACE data has been downloaded and analysed through GEE. The main limitation of this dataset is its course resolution of 55.6 km2 as downloaded from the platform. This is due to the small geographical area of Bahrain at around 800 km2, causing water storage monitoring in specific locations to be a difficult task. Figure 17 demonstrates the span of GRACE data relative to the area of Bahrain.
Figure 17.GRACE Mascon- 2002 to 2024 Bahrain
HAND
The HAND model shown in the figure 18 provides valuable insights for addressing water scarcity in Bahrain. The low-lying areas highlighted in blue indicate regions where water tends to accumulate or water table is relatively shallow, suggesting potential zones for managed aquifer recharge (MAR) or stormwater harvesting. These areas could be prioritised for infiltration basins, recharging wells, or constructed wetlands to enhance groundwater storage. Conversely, the higher elevation zones in grey are less likely to retain surface water but could be strategically used for runoff collection and diversion to recharge areas. Given Bahrain’s arid climate and dependence on non-conventional water sources, integrating HAND-based terrain analysis into water resource planning can support more resilient, localised, and efficient water management strategies, particularly in optimising land use for recharge, storage, and flood mitigation purposes.
Figure 18. HAND results map
Soil moisture (SAR)
Figure 19 shows the mean soil moisture values of different regions of Bahrain. The southern regions seem to be drier while most central regions are wet. The analysis excluded urban regions.
Figure 19. SAR soil moisture results map
Soil moisture (Optical)
Figure 20 illustrates the soil moisture map with optical imagery for Bahrain. The results here highlight the northern west regions with high soil moisture values and the central, southern regions as dry with some specific location in the central and southern regions as wet.
Figure 20. Optical soil moisture results map
Shallow groundwater locations/recharge areas
Through Figure 5, the combinations of HAND, SAR and optical soil moisture has yielded to the potential locations for shallow groundwater locations/recharge areas. The areas highlighted in red represent the locations with highest potential.
Figure 21. Shallow groundwater locations/recharge areas results map
Solution impact
With the establishment of a methodology that identifies locations of shallow groundwater or recharge, significant information is being derived about the hydrological state of the country. This importance is placed due to the lack of remote sensing data that enables direct measurement of groundwater in the area. Hence the information extracted from this methodology can be initially integrated with sample in-situ data to calibrate the model; and then, be relied on solely for future measurements. Additionally, with the country’s rigorous focus on addressing groundwater scarcity, this type of information can greatly support decision-making when it comes to the formulation and execution of different projects and policies related to this matter.
Future work
To enhance the accuracy, applicability, and long-term impact of this solution in addressing water scarcity in Bahrain, several future developments are proposed:
Integration of additional remote sensing products: Incorporate higher-resolution satellite data to improve spatial resolution in soil moisture and elevation analyses, enabling finer-scale hydrological modeling and more localised identification of recharge zones. Moreover, the inclusion of land cover and geological characteristics can enhance the spatial modelling conducted.
Validation with in-situ data: Collaborate with local water authorities to collect and integrate ground-truth data such as groundwater levels, soil profiles, and well yields to validate and calibrate the HAND model and soil moisture outputs. This is also vital to assess the suitable weightage and classification for spatial modelling to be done to combine all three products generated.
Development of a Decision Support System (DSS): Create an interactive platform or dashboard that integrates HAND, GRACE, and soil moisture maps to assist policymakers in identifying priority areas for groundwater recharge, stormwater harvesting, and drought preparedness.
Temporal analysis and trend monitoring: Implement time-series analyses of GRACE and soil moisture data to detect trends, seasonal variations, and anomalies in water availability, supporting early warning systems and long-term planning.
Hydrological modelling coupling: Link HAND-derived terrain data with physically based hydrological models (e.g., SWAT, DHSVM) to simulate runoff, infiltration, and recharge scenarios under different land use and climate conditions.
Community engagement and capacity building: Conduct training workshops and knowledge-sharing activities with national institutions and stakeholders to build local capacity in geospatial water resource monitoring using open-source and space-based tools.
By pursuing these developments, the solution can evolve into a comprehensive and replicable model for sustainable groundwater resource management in water-scarce regions worldwide.
Relevant publications
Related space-based solutions
Sources
Nobre, A. D., Cuartas, L. A., Hodnett, M., Rennó, C. D., Rodrigues, G., Silveira, A., Waterloo, M., & Saleska, S. “Height Above the Nearest Drainage – a hydrologically relevant new terrain model.” Journal of Hydrology 404, no. 1–2 (2011): 13–29. https://doi.org/10.1016/j.jhydrol.2011.03.051.
Rainwater harvesting is a crucial solution for water scarcity in semi-arid countries like Kenya. Kenya’s arid and semi-arid lands (ASALs) cover 80% of its territory, making rainwater harvesting essential. There are various reasons why this approach can be beneficial in Samburu County.
Water Scarcity Mitigation: Semi-arid regions face unpredictable rainfall and frequent droughts, exacerbated by climate change. Rainwater harvesting captures the little rainfall received, providing a reliable water source.
Sustainable Water Supply: Rainwater harvesting techniques include small planting basins, trenches, stone bunds, and grass strips. These structures redirect runoff toward crops and pastures. By capturing rainwater, communities can sustain livestock, crop production, and domestic needs.
Environmental Resilience: Droughts in Kenya are becoming more frequent due to environmental degradation and climate change. Rainwater harvesting helps mitigate
the impact of these droughts.
Cost-Effective and Low-Tech: Rainwater harvesting doesn’t require complex infrastructure. It utilizes existing resources effectively.
Outline of the solution
Steps to be taken:
Rainy season identification: the rainy season in the selected area needs to be identified. Further, the precipitation data from the past three to ten years needs to be studied.
A geological study needs to be developed, this includes the study of the geology of the region, the development of geological maps, digital elevation model (DEM) maps, and normalized difference vegetation index (NDVI) map.
Precipitation maps of the location need to be developed.
Site Selection: Identify suitable locations for rainwater harvesting. Factors such as rainfall patterns, topography, and proximity to communities need to be considered. Choose areas with consistent rainfall during specific seasons.
Catchment area: Determine the catchment area where rainwater will be collected. Common catchment surfaces include rooftops, roads, or open fields. Ensure that the catchment area is clean and free from contaminants.
Conveyance system: Design an efficient system to channel rainwater from the catchment area to storage facilities. Components include gutters, downspouts, pipes, and first-flush diverters. Proper sizing and maintenance are crucial.
Storage tanks or reservoirs: Select appropriate storage options based on community needs. Common choices include:
Roof catchment tanks: Placed near buildings to store rainwater from rooftops.
Ground-level tanks: Buried or partially buried to store larger volumes.
Rock catchments: Natural depressions or excavated pits lined with impermeable materials.
Consider tank capacity, material durability, and accessibility for maintenance.
Water quality and treatment: Rainwater may contain impurities. Implement filtration systems to improve water quality. Use first-flush diverters to discard initial runoff (which may contain debris).
Climate resilience: Adapt the project to changing climate conditions. Monitor rainfall patterns and adjust storage capacity accordingly.
Accomplished progress
Steps 1 - 3 have been successfully accomplished. Step 2 was developed in another space-based solution.
Rainy season identification
Figure 1: Decadal Precipitation in Kenya. Precipitation information during 21-31 December 2023. (Source: Dekadal Rainfall (meteo.go.ke))
Precipitation data from at least the last three years: CHRIPS
Figure 3: Precipitation DEM map made with QGIS. Version 3.32.3 / Version 3.28.11 LTR.
Precipitation maps
Figure 4: Precipitation map from 2023 made with QGIS. Version 3.32.3 / Version 3.28.11 LTR. The yellow areas indicate heavy rainfall, the green areas indicate moderate rainfall.
Figure 5: Precipitation map from 2024 made with QGIS. Version 3.32.3 / Version 3.28.11 LTR. The yellow areas indicate heavy rainfall, the green areas indicate moderate rainfall.
Development of precipitation maps
To create a precipitation map in QGIS, raster data representing precipitation values is needed. Therefore, the data is added to a raster layer in the QGIS project.
Steps to create a raster layer to map precipitation data:
Obtain precipitation data: First, obtain precipitation data from a reliable source in a compatible format. Common formats for precipitation data include GeoTIFF (.tif), NetCDF (.nc), or ASCII grid (.asc) files.
Open QGIS: Launch QGIS on your computer. QGIS is open for download: Download QGIS
Add Raster Layer:
Go to the "Layer" menu and select "Add Layer"> "Add Raster Layer".
Or click the "Add Raster Layer" button in the toolbar.
Alternatively, use the shortcut Ctrl+Shift+R.
Browse for Precipitation Data: In the "Data Source Manager" dialog that appears, navigate to the directory where your precipitation data is stored.
Select precipitation data file: Select the precipitation data file for the map. Make sure to choose the correct file format that matches the data (e.g., GeoTIFF, NetCDF, ASCII grid).
6.Add Layer to the map: Once the precipitation data file is selected, click "Open" or "Add" to add the raster layer to your QGIS project.
7. Display the precipitation map: Now that you've added the precipitation data as a raster layer, you can visualize it on the map canvas in QGIS. Depending on the spatial resolution and coverage of your precipitation data, you may need to zoom or pan the map to view the data effectively.
Once the precipitation data is added as a raster layer, the map layout can be customized to include legend, latitude and longitude factors, title, and other properties using the Print Layout functionality.
Open Print Layout: Go to the "Project" menu and select "New Print Layout" to create a new print layout. Give your layout a name and click "OK".
Add Map to Layout: In the print layout view, click on the "Add Map" button in the toolbar, then click and drag to create a rectangle where the map is to appear on the layout.
3. Add Legend: Click on the "Add Legend" button in the toolbar, then click and drag to create a rectangle where the legend is to appear on the layout.
4. Add Title: Go to the "Layout" menu and select "Add Item" > "Label". Click and drag to create a rectangle where the title is to appear on the layout. Double-click on the label element to edit the text and customize the font, size, and style.
5. Add Other Elements: You can add additional elements such as scale bars, north arrows, text boxes, images, and annotations using the "Add Item" menu in the toolbar.
6. Add Latitude and Longitude Grid: Go to the "Layout" menu and select "Add Item" > "Map Grid". Click and drag to create a rectangle where the grid is to appear on the layout.
Configure Grid Properties: Double-click on the grid element to open the "Item Properties" panel. Here, you can configure various properties of the grid, including:
Grid Type: Choose between "Frame and Annotations", "Grid Lines", "Annotation Only", or "Frame Only" depending on the desired appearance.
Interval Units: Choose the units for the grid intervals (e.g., degrees for latitude and longitude).
Interval X and Y: Set the interval for latitude and longitude gridlines.
Annotation X and Y: Choose whether to annotate the gridlines with latitude and longitude values.
Customize Appearance (Optional): You can further customize the appearance of the gridlines, such as line style, color, and labeling options, using the options available in the "Item Properties" panel.
Export and save: the layout can be exported to various formats such as PDF, image files, or print directly from QGIS.
Future steps
Steps 5-13 will be developed once step 3 (site selection) has been developed:
Determine if enough water can be stored during the rainy season to last the dry season.
Determine seasonal river location and river width: determines the optical data that can be used (due to spatial resolution)
Sediment load of the river
outcrops in bed and bank: Ideally don’t want to have to excavate >5m deep
Existing scoop holes on the river existing far into the dry season (indicates good water storage already)
Vegetation on the banks (indicates localized water source)
Slope of riverbanks (shouldn’t be too shallow)
Slope of riverbed (ideally 1 - 5 %)
Stream length
Catchment area (from DEM)
Location of faults and fractures
Finally, for the implementation of the rainwater harvesting plan, sediment samples from the selected seasonal river need to be studied.
Relevant publications
Related space-based solutions
Earth observation for ecosystem resilience: the Lake Ol' Bolossat monitoring initiative - in development and need for input
Wetland extent mapping - North Central Nigeria, Ibaji State (in progress)
Wetland extent mapping - North Central Nigeria, Ibaji State (in progress)
Identification of potential locations/recharge for shallow groundwater in geographically small countries - completed
Flood modeling for melting glacier - need for input
Identify upstream potential pollution sources - in development
Surface water extent river course - in development
Construction of sand dams for Samburu County - in development
Rainwater harvesting in Samburu County – in development
The geology of Kenya was studied to develop several maps with ArcGIS to understand the geological and topographical setting of the locations of the communities. The maps were obtained from the European Commission, Joint Research Centre (see sources).
The geology of Kenya shows Metamorphic rocks in the western part due to high metamorphic processes.
Tertiary and Quaternary Volcanic rock are located in the East due to the split of the East African Rift System causing volcanic activity during these periods.
Figure 1: National Atlas of Kenya - Geological Map. (n.d.). European Commission, Joint Research Centre.
Location of Samburu in the geological map of Kenya
The geology of Samburu County is mostly magmatic with Quaternary elements (for details see Figure 3).
Figure 3: Detailed geological map of Samburu County (Krhoda et al. 2015).
Figure 4: Map of locations of the community, from where water access would be needed in the vicinity.
Samburu County's topographic map
A topographic map from Samburu County was developed to understand where the major recharge zones are located. These zones in arid areas can also be indicated by the Normalised Differentiated Vegetation Index (NDVI).
Figure 5: Topographic map of Samburu province in Kenya. Credit: Topographic Map (2023)
Location of water sources
The type and location of water sources in the Samburu District were studied with a map provided by the KSA. With the study of the geological maps and the water sources map, a geological and hydrological comparison was made, to understand where groundwater could be located.
Fig.6. Samburu District - Type and Location of Water Sources, Key Landforms, and Soils (Symbols - See Map 11). (n.d.). European Commission, Joint Research Centre. https://esdac.jrc.ec.europa.eu/content/samburu-district-type-and-locati… (visited: 19.10.2023)
Figure 6: Water sources in the Samburu county. Map provided by Kenya Space Agency. Source: G. de Sourza, Dept. Geography, University of Nairobi, J. Keza, Ministry of Water Development.
Development of the maps
With the support from datasets obtained from the Kenya Space Agency a differentiated vegetation map (NDVI), an elevation map (DEM), and a water points map were developed using ArcGIS Pro 3.
DEM map in ArcGIS Pro3
Add your Samburu county map dataset to the project. You can do this by going to the "Map" tab and using the "Add Data" button to import your county shapefile or feature class.
Add Samburu Elevation Data: To create an elevation map, you need elevation data. Download the Digital Elevation Model (DEM) data. Once downloaded, add the DEM to your map.
Symbolize Elevation Data: Symbolize the elevation data to represent different elevation ranges. You can do this by right-clicking on the DEM layer, selecting "Symbology," and choosing a suitable color ramp and classification method.
Add Legend: Insert a legend to the map by going to the "Insert" tab and selecting "Legend." Configure the legend properties to display the layers and symbology correctly.
Add North Arrow and Scale Bar: Insert a North arrow and scale bar by going to the "Insert" tab and selecting "North Arrow" and "Scale Bar." Adjust the properties to suit your map layout.
Adjust Map Layout: Go to the "Layout" tab to set up the map layout. Adjust the size of the map, add a title, and organize the legend, scale bar, and north arrow as desired.
Save and Export: Save your project, go to the "Share" tab, and export the map as an image, PDF, or any other desired format.
Figure 7: Elevation Map made with QGIS. Version 3.32.3 / Version 3.28.11 LTR.
NDVI map in ArcGIS Pro3
ArcGIS Pro involves using the raster calculator to perform the necessary mathematical operations on the input bands. NDVI is typically calculated using the near-infrared (NIR) and red bands from a multispectral image.
Add county dataset: Add your Samburu county dataset to the map. You can do this by going to the "Map" tab and using the "Add Data" button to import your county shapefile or feature class.
Add satellite imagery: import Samburu County Landsat or Sentinel imagery containing the necessary bands (Red and Near Infrared) for NDVI calculation. You can add the imagery by going to the "Map" tab and selecting "Add Data" or using the "Add Raster Data" option.
Calculate NDVI: Open the "Image Analysis" window by going to the "Analysis" tab and selecting "Tools." Use the "NDVI" tool to calculate NDVI from the available bands.
The equation of NDVI is as follows: NDVI = ((IR - R)/(IR + R)); IR = pixel values from the infrared band and R = pixel values from the red band
Symbolize NDVI: Symbolize the NDVI layer to visually represent vegetation health. Typically, healthy vegetation appears in shades of green, while less healthy or bare areas might be represented in browns or grays.
Add legend: Insert a legend to the map by going to the "Insert" tab and selecting "Legend." Configure the legend properties to display the NDVI layer and symbology correctly.
Add North Arrow and Scale Bar: Insert a North arrow and scale bar by going to the "Insert" tab and selecting "North Arrow" and "Scale Bar." Adjust the properties to suit your map layout.
Adjust map layout: Go to the "Layout" tab to set up the map layout. Adjust the size of the map, add a title, and organize the legend, scale bar, and north arrow as desired.
Save and export: Save your project, go to the "Share" tab, and export the map as an image, PDF, or any other desired format.
Figure 8: NDVI made with QGIS. Version 3.32.3 / Version 3.28.11 LTR.
Water points map in ArcGIS 3
Add county dataset: Add the Samburu county dataset to the map. You can do this by going to the "Map" tab and using the "Add Data" button to import your county shapefile or feature class.
Add water points dataset: Import your water points dataset into the map. Use the "Add Data" button to add the water points layer. Make sure the dataset contains information about the location of water points.
Symbolize water points: Symbolize the water points on the map. Right-click on the water points layer, go to "Symbology," and choose an appropriate symbol to represent water points. You may want to use a distinctive symbol like a blue dot.
Add legend: Insert a legend to the map by going to the "Insert" tab and selecting "Legend." Configure the legend properties to display the water points layer and its symbol correctly.
Add North arrow and scale bar: Insert a North arrow and scale bar by going to the "Insert" tab and selecting "North Arrow" and "Scale Bar." Adjust the properties to suit your map layout.
Adjust map layout: Go to the "Layout" tab to set up the map layout. Adjust the size of the map, add a title, and organize the legend, scale bar, and north arrow as desired.
Save and export: Save your project, go to the "Share" tab, and export the map as an image, PDF, or any other desired format.
Figure 9: Elevation Map made with QGIS. Version 3.32.3 / Version 3.28.11 LTR.
Suggested aquifer location map
Add the geological map of Kenya dataset: You can do this by going to the "Map" tab and using the "Add Data" button to import your county shapefile or feature class.
Add Water points dataset: Import your water points dataset into the map. Use the "Add Data" button to add the water points layer. Make sure the dataset contains information about the location of water points. Delete the ones that are not relevant to the communities
Add legend: Insert a legend to the map by going to the "Insert" tab and selecting "Legend." Configure the legend properties to display the water points layer and its symbol correctly.
Add North arrow and scale bar: Insert a North arrow and scale bar by going to the "Insert" tab and selecting "North Arrow" and "Scale Bar." Adjust the properties to suit your map layout.
Adjust map layout: Go to the "Layout" tab to set up the map layout. Adjust the size of the map, add a title, and organize the legend, scale bar, and north arrow as desired.
Save and export: Save your project, go to the "Share" tab, and export the map as an image, PDF, or any other desired format.
Figure 10. Suggested aquifer locations in Samburu County based on the geology.
Interpretation
An aquifer could be located in a magmatic/metamorphic basement, which suggests they moderate productivity and low groundwater potential. This is due to the fact that magmatic rocks have low permeability and therefore the groundwater recharge is low.
Ideal outcome: A possible groundwater source exists near the communities homes and a borehole could be developed.
Conclusion
The communities are located in the SW of the Samburu District. The geology of the area is mostly magmatic and metamorphic. This suggests that the ground has very low permeability. However, near the location of the communities, there are two springs. These springs point to an aquifer in the area, where a well for the communities in the area could be developed. Ideally, various groundwater sources could be located with the maps and the support from space technologies. The next steps to be taken are with external actors, e.g. drilling and pumping tests approved by the local authorities
Future steps
Work with hydrogeologists to prepare a borehole siting report as well as an Environmental Impact Assessment. Groundwater relief has some trusted hydrogeologists in their network in Kenya who could implement that and submit the information to the Kenya Water Resources Agency.
Kenya Water Resources Agency needs to grant permission for drilling.
Drilling and pumping test: A contractor performs drilling and a pumping test. The latter is to identify the appropriate pump to be used.
Study the groundwater level, type of aquifer, groundwater recharge, groundwater vulnerability.
Relevant publications
Related space-based solutions
Sources
Barasa, M., Crane, E., Upton, K., Ó Dochartaigh, B.É. & Bellwood-Howard, I. (2018): Africa Groundwater Atlas: Hydrogeology of Kenya. British Geological Survey. Accessed [22.09.2023]. http://earthwise.bgs.ac.uk/index.php/Hydrogeology_of_Kenya
Kuria, Z. (2013): Groundwater Distribution and Aquifer Characteristics in Kenya. Developments in Earth Surface Processes, Elsevier. 16, 8, p. 83-107.
Krhoda, G., Nyandega, I. & Amimo, M. (2015): Geophysical investigations of Suyien Earthdam in Maralal, Samburu County, Kenya. International Journal of Physical Sciences. 2, p.33-49.
Makinouchi, T., Koyaguchi, T., Matsuda, T., Mitsushio, H. & Ishida, S. (1984): GEOLOGY OF THE NACHOLA AREA AND THE SAMBURU HILLS, WEST OF BARAGOI, NORTHERN KENYA. African Study Monographs, Supplementary Issue 2, p. 15-44.
Touber, L. (1986): Landforms and solid of samburu District, Kenya. A site evaluation for rangeland use. The Winand Staring Centre for Integrated Land, Soil and Water Research. Report 6.
Sand dams are a sustainable solution for regions facing water scarcity, especially as climate change impacts become more pronounced. Here’s why they are beneficial:
Easy to build and maintain: Sand dams are straightforward to construct and require minimal maintenance. They consist of a concrete embankment built across seasonal streams that flow during the rainy season but run dry during the dry season.
Long-lasting: Once built, sand dams can last for decades without major refurbishment. Their durability ensures a consistent water supply over an extended period.
Water source: Sand dams provide a reliable water source in arid regions. They capture rainwater and store it in the sand, making it accessible throughout the year—even during dry seasons when water is scarce.
Beneficial for all income levels: While sand dams benefit people of all income levels, they are particularly advantageous for low-income households, disadvantaged communities, and women.
Local collaboration: These dams are constructed in close collaboration with local communities. The project provides necessary materials like cement and steel, while the community contributes natural materials such as sand and stones.
Climate adaptation: Sand dams help communities adapt to climate change by ensuring water availability for both people and livestock. They reduce the time needed to collect water, allowing community members to focus on other activities.
Ecological impact: Sand dams raise the water table around them, benefiting natural vegetation and biodiversity dependent on aquatic ecosystems. They also conserve ecosystems by providing a sustainable water supply.
The cost to create a sand dam in Kenya is about 6000 - 8500 EUR - sometimes provided 50 / 50% by NGO and community - used for material.
Outline of the solution
Several considerations to be taken before constructing a sand dam:
To identify if a sand dam is a suitable solution, information on the river where the sand dam is desired to be built must be collected, particularly river width and depth to bedrock.
The concrete dam wall needs to be anchored onto the bedrock. Excavation must be done until solid bedrock is reached to anchor the wall.
The upper and middle courses of a river, at least 4km from the head of a valley are the most suitable areas due to high course sediment load and a reasonable riverbed gradient of <5%.
The construction of a sand dam needs a lot of manpower. It needs to be constructed in coordination with the dry season Jan to Feb or June to Sept.
It takes a few years for the sand dam to fill up, as a few seasons are needed for the sand to build up (sedimentation process).
The remote sensing data that can be used needs a resolution suitable to the river width. Sand dams are typically on rivers between 5-50 meters in width.
Steps to be taken
Further, several important factors must be considered to ensure its effectiveness and sustainability:
A geological study needs to be developed, this includes the study of the geology of the region, the development of geological maps, digital elevation model (DEM) maps, and normalized difference vegetation index (NDVI) map.
Precipitation maps of the location need to be developed.
Site Selection: Choose a suitable location along a seasonal riverbed or stream. The site should have a consistent flow during the rainy season and dry up during the dry season.
Assessment of the geology and soil conditions to ensure that the sand and rock layers are suitable for dam construction.
Hydrological Assessment: Study the local hydrology, including rainfall patterns, runoff, and stream flow. This information helps determine the dam’s capacity and water storage potential.
Design and Construction: Design the dam’s dimensions based on the expected water flow. The dam should be wide enough to capture sufficient sand and water.
Construct a concrete wall across the riverbed, reinforced with steel bars. The wall should extend into the riverbanks.
Create a spillway to allow excess water to flow downstream during heavy rains.
Use locally available materials (such as sand, stones, and cement) to build the dam.
Sand Storage: The primary purpose of the dam is to store sand and water. As water flows, it deposits sand behind the dam.
The sand acts as a natural filter, allowing water to percolate and recharge the groundwater.
Maintenance and Monitoring: Regularly inspect the dam for signs of erosion, cracks, or damage. Train community members to perform minor repairs and maintenance.
Long-Term Impact: Consider the broader impact of the sand dam on the ecosystem, vegetation, and wildlife.
As in Samburu County most rivers are seasonal, the seasonality of the existing rivers needs to be assessed. Furthermore, the sediment load needs to be assessed; the river must be composed mostly of medium-coarse-grained sand and low clay/ silt content
Figure 1: Kipico sand dam, Makueni County, Kenya (Ritchie., 2022)
Accomplished progress
Referring to the outline of the solution mentioned before, step 1 has been already developed:
For the construction of sand dams, the elevation of the area (DEM) of interest and the differentiated vegetation index (NDVI) are crucial required data:
Digital Elevation Model
Figure 2: Elevation Map made with QGIS. Version 3.32.3 / Version 3.28.11 LTR.
Normalized difference vegetation index
Figure 3: NDVI made with QGIS. Version 3.32.3 / Version 3.28.11 LTR.
For the successful construction of the sand dams following steps (3-6) are in development:
3. Site and river selection
4. Assessment of the geology and soil conditions
5. Hydrological assessment
6. Design and construction of the dam
Steps 6-14 will be developed after steps 3-6 has been developed. Finally, for the implementation of the construction plan the engagement of the community is needed to find local partners, such as NGOs who are giving out the equipment and to identify community members, that are willing to help in the building of the dam.
Construction of sand dams for Samburu County - in development
Rainwater harvesting in Samburu County – in development
Determining optimum sites for rainwater harvesting - in development
Water suitability map (Samburu County, Kenya) - in development
Sources
Maddrell, Simon, and Ian Neal. 2012. “Sand Dams: A Practical Guide”.
Cozens, Jack. 2017. “Technical Feasibility Framework For Sand Dams Applied To Eastern Chad”. Loughborough University. https://repository.lboro.ac.uk/projects/WEDC_Masters_Dissertations/86858.
Forzieri, Giovanni, Marco Gardenti, Francesca Caparrini, and Fabio Castelli. (1AD) 2008. “A Methodology For The Pre-Selection Of Suitable Sites For Surface And Underground Small Dams In Arid Areas: A Case Study In The Region Of Kidal, Mali”. Physics And Chemistry Of The Earth, Parts A/B/C 33. Pergamon: 74-85. doi:10.1016/J.PCE.2007.04.014.
Hofkes, E H, and J T Visscher. 1986. “Artificial Groundwater Recharge For Water Supply Of Medium-Size Communities In Developing Countries”. https://www.samsamwater.com/library/Artificial_groundwater_recharge_for_water_supply_of_medium-size_communities_in_developing_countries.pdf.
To establish an integrated monitoring and decision-support system that uses Earth Observation data and machine learning to track the status of Lake Ol' Bolossat, enabling evidence-based conservation and sustainable development actions.
Requirements
Data
Below is a table showing the data requirements and sources.
Data source
Use case
Period
JRC GSW
Historical water extents
1984 - 2023
Sentinel-1 SAR
Water extent during cloud-cover seasons
2014 - present
Sentinel-2 2 MSI
Habitat classification, NDVI, MNDWI, NDBI
2015 - present
MODIS
NDVI/ET anomalies and drought indicators
2000 - present
Rainfall and climate (CHIRPS/ERA5)
Climate trend correlation with hydrological changes
1984 - present
Population/Human settlement (WorldPop, GHSL)
Land use pressure mapping
2000 - present
Field surveys and local NGO data
Validation and community-level observations
As available
Software
The analysis is being done using open-source platforms and software: Google Earth Engine and QGIS.
To access Google Earth Engine, one needs a Google account that will be linked to the platform link. If you are new to the platform, create an account, and you can start using it. If you already have an account, just sign in and be directed to the code editor. If you are new to the software, you can access the training manual here.
To access QGIS, you need to download it as it is a software, link. If you are new to the software, you can access the training manual here.
Physical
Establishment of Ground Monitoring Stations
Purpose: To validate satellite data and collect real-time, on-the-ground water level, rainfall, and biodiversity observations.
Components: Water gauges, weather sensors, camera traps for biodiversity, and simple soil moisture probes.
Community Information Boards or Digital Kiosks
Purpose: To display maps, water level trends, and habitat updates to residents in a simplified, accessible format.
Location: Strategic points around the lake (e.g., near schools, water collection points, community centers).
Buffer Zone Demarcation and Fencing
Purpose: To physically protect critical wetland habitats and prevent encroachment or grazing in sensitive areas.
Details: Fencing or natural barriers like vegetation planting along designated riparian zones.
Construction of a Local Conservation and Data Hub
Purpose: To provide a space for community meetings, training sessions, citizen science coordination, and storing field equipment.
Location: Ideally within a local government or NGO compound near the lake.
Rehabilitation of Degraded Wetlands
Purpose: Restore areas where the lakebed or surrounding wetlands have been severely altered.
Methods: Planting of indigenous wetland vegetation, removal of invasive species, and controlled re-wetting.
Water Resource Management Infrastructure
Purpose: To improve the regulation and sustainable use of the lake's water.
Examples: Controlled inflow/outflow channels, community-led irrigation management systems, water pans for livestock to reduce direct lake access.
Signage and Protected Area Boundary Markers
Purpose: To raise awareness of Lake Ol’ Bolossat’s legal protection status and to visually communicate boundaries to land users.
Materials: Durable signs, educational posters, and protected area plaques.
Solar-Powered Connectivity Units (Optional but strategic)
Purpose: For uplinking field sensor data or enabling access to the online dashboard in remote locations.
Components: Solar panels, GSM routers, rugged tablets or data loggers.
Outline steps for a solution
Phase 1: Planning and Stakeholder Engagement – To do
The first phase involves defining the objectives of the monitoring system and identifying measurable success indicators aligned with conservation priorities and local needs. This is followed by engaging key stakeholders such as the National Environment Management Authority (NEMA), Kenya Wildlife Service (KWS), Water Resources Authority (WRA), Nyandarua County Government, and local community-based organizations. Stakeholder consultations are critical for gathering input on data needs, identifying decision-making gaps, and ensuring buy-in from both policy actors and community leaders. A situational analysis should be conducted to map existing infrastructure, technical capacity, internet access, and human resources available on the ground, helping to identify opportunities and constraints for implementation.
Phase 2: Data Collection and System Design – In progress
In this phase, a comprehensive monitoring framework is developed, specifying the key indicators to be tracked, such as seasonal water extent, land cover transitions, and flood-prone zones. Relevant Earth observation datasets are selected, including Sentinel-1 SAR for water extent, Sentinel-2 for habitat classification, JRC Global Surface Water for historical trends, and CHIRPS for rainfall data. A prototype dashboard is developed using Google Earth Engine, visualizing these datasets through maps, time series graphs, and interactive overlays. Simultaneously, field validation activities are conducted to ground-truth satellite-derived maps. This includes collecting GPS points, photos, and observations on vegetation, land use, and visible signs of degradation, ensuring the remote sensing outputs are accurate and contextually relevant.
Phase 3: System Testing and Expansion – To do
Once the prototype is ready, it is tested with stakeholders through pilot sessions and community workshops. These engagements are used to collect feedback on the dashboard’s usability, relevance, and user experience, particularly for non-technical audiences. Revisions are made to improve clarity, layer toggling, labelling, and interpretability. In parallel, basic physical interventions begin, such as the installation of simple water gauges, informational signboards, and boundary markers for conservation zones. These elements help translate digital insights into tangible tools for the community. Plans for expanding field infrastructure, such as creating buffer zones or establishing a local conservation hub, are also explored during this phase.
Phase 4: Deployment and Knowledge Sharing – In progress
Following successful pilot testing and system refinement, the full monitoring platform is deployed on a publicly accessible hosting environment, such as Firebase, Earth Engine Apps, or a custom-built website. The platform is shared with agencies and conservation partners, accompanied by a rollout plan that includes formal training sessions. These capacity-building workshops are designed to empower users, ranging from government officers to youth groups, with the skills to interpret dashboard outputs and use the data in planning and response. User guides, translated materials, and offline summaries are provided to support long-term usability and local ownership.
Phase 5: Monitoring, Maintenance, and Scaling – To do
The final phase focuses on monitoring the performance and real-world impact of the system. Regular evaluations are conducted to assess usage, data accuracy, stakeholder engagement, and improvements in environmental decision-making. Lessons learned are used to refine system features, add new datasets, and introduce functionalities such as alert notifications or mobile-friendly access. The success of the Lake Ol’ Bolossat solution creates a foundation for scaling to other endangered wetlands across Kenya, such as Lakes Baringo, Naivasha, or Kanyaboli. Finally, the project contributes to the broader Space4Water and open science communities by publishing methods, code, and findings on platforms like GitHub and Earth Engine’s asset repository, ensuring transparency, replicability, and collaboration.
Results
The Lake Ol’ Bolossat monitoring system, currently at prototype stage, holds significant potential to transform how freshwater ecosystems are managed at local and national levels. By integrating satellite-derived water and habitat data into an accessible dashboard, the system aims to bridge the gap between Earth observation science and on-the-ground conservation action. Once implemented with key stakeholders and end users, the following impacts are anticipated:
Support for Environmental Agencies and County Governments: The system could enhance the capacity of institutions such as the National Environment Management Authority (NEMA), Kenya Wildlife Service (KWS), Water Resources Authority (WRA), and the Nyandarua County Government by providing timely, location-specific data for decision-making on lake and wetland management.
Early Warning for Hydrological and Ecological Risks: The dashboard could enable stakeholders to detect abnormal patterns in water extent, such as persistent shrinkage or sudden expansion, triggering early intervention to prevent ecological degradation or disaster impacts on nearby communities.
Community Awareness and Engagement: By visualizing seasonal and long-term changes, the system can be used to build awareness among residents, farmers, and water users around Lake Ol’ Bolossat, empowering them to engage in sustainable practices and to advocate for the protection of the lake.
Policy-Relevant Monitoring Tool: The platform can serve as a long-term environmental monitoring tool to support the implementation of wetland protection policies, local water catchment strategies, and integrated land use planning frameworks.
Scalability to Other Freshwater Ecosystems: Once validated, the approach used at Lake Ol’ Bolossat can be adapted to other small inland water bodies across Kenya and East Africa, particularly those facing similar risks of drying, encroachment, or biodiversity loss.
Alignment with Global and National Development Goals: The system supports Kenya’s contributions to Sustainable Development Goals (SDGs), particularly:
SDG 6: Ensure availability and sustainable management of water and sanitation
SDG 13: Take urgent action to combat climate change and its impacts
SDG 15: Protect, restore and promote sustainable use of terrestrial ecosystems and halt biodiversity loss