Sustainably manage forests, combat desertification, halt and reverse land degradation, halt biodiversity loss
Forests cover 30.7 per cent of the Earth’s surface and, in addition to providing food security and shelter, they are key to combating climate change, protecting biodiversity and the homes of the indigenous population. By protecting forests, we will also be able to strengthen natural resource management and increase land productivity.
At the current time, thirteen million hectares of forests are being lost every year while the persistent degradation of drylands has led to the desertification of 3.6 billion hectares. Even though up to 15% of land is currently under protection, biodiversity is still at risk. Deforestation and desertification – caused by human activities and climate change – pose major challenges to sustainable development and have affected the lives and livelihoods of millions of people in the fight against poverty.
Efforts are being made to manage forests and combat desertification. There are two international agreements being implemented currently that promote the use of resources in an equitable way. Financial investments in support of biodiversity are also being provided.
The Lion’s Share Fund
On 21 June, 2018, the United Nations Development Programme (UNDP), FINCH and founding partner Mars, Incorporated, announced the Lion’s Share, an initiative aimed at transforming the lives of animals across the world by asking advertisers to contribute a percentage of their media spend to conservation and animal welfare projects. The Lion’s Share will see partners contribute 0.5 percent of their media spend to the fund for each advertisement they use featuring an animal. Those funds will be used to support animals and their habitats around the world. The Fund is seeking to raise US$100m a year within three years, with the money being invested in a range of wildlife conservation and animal welfare programs to be implemented by United Nations and civil society organizations.
Facts and Figures
Forests
Around 1.6 billion people depend on forests for their livelihood, including 70 million indigenous people.
Forests are home to more than 80 per cent of all terrestrial species of animals, plants and insects.
Between 2010 and 2015, the world lost 3.3 million hectares of forest areas. Poor rural women depend on common pool resources and are especially affected by their depletion.
Desertification
6 billion people depend directly on agriculture, but 52 per cent of the land used for agriculture is moderately or severely affected by soil degradation.
Arable land loss is estimated at 30 to 35 times the historical rate
Due to drought and desertification, 12 million hectares are lost each year (23 hectares per minute). Within one year, 20 million tons of grain could have been grown.
74 per cent of the poor are directly affected by land degradation globally.
Biodiversity
Illicit poaching and trafficking of wildlife continues to thwart conservation efforts, with nearly 7,000 species of animals and plants reported in illegal trade involving 120 countries.
Of the 8,300 animal breeds known, 8 per cent are extinct and 22 per cent are at risk of extinction.
Of the over 80,000 tree species, less than 1 per cent have been studied for potential use.
Fish provide 20 per cent of animal protein to about 3 billion people. Only ten species provide about 30 per cent of marine capture fisheries and ten species provide about 50 per cent of aquaculture production.
Over 80 per cent of the human diet is provided by plants. Only three cereal crops – rice, maize and wheat – provide 60 per cent of energy intake.
As many as 80 per cent of people living in rural areas in developing countries rely on traditional plant-‐based medicines for basic healthcare.
Micro-organisms and invertebrates are key to ecosystem services, but their contributions are still poorly known and rarely acknowledged.
Space-based Technologies for SDG 15
Protecting nature and biodiversity is an increasingly important challenge for humanity.
Satellite technology can be used to track endangered species and disrupt the poaching activities that drive the illegal wildlife trade.
UNOOSA helps stakeholders in biodiversity and wildlife management use space applications to monitor, assess and manage biodiversity and ecosystems. http://www.unoosa.org/oosa/en/ourwork/psa/emnrm/biodiversity.html
In this interview, we discuss how time-series of satellite data can be used to monitor the environmental, and more specifically the water domain, using the data cube technology.
Professor Wagner holds a Ph.D. in remote sensing. He gained his experience at renowned institutions, including academia, space agencies and international organisations. He is the Dean of the Faculty for Mathematics and Geoinformation and cofounder of the Earth Observation Data Centre for Water Resources among other affiliations.
The following interview with Dr. Sherine Ahmed El Baradei is focusing on water quality and its relation to space technology. Water is the essence of life. Thus preservation of water quality is of a big concern to human health and to fauna and flora in water bodies. The interview explains what is water quality and what are water quality parameters of water bodies. Furthermore, the importance of using space technologies and applications in contributing to water quality monitoring and determination of hydraulic and hydrologic conditions is thoroughly discussed. For example, temporal resolution of satellites and their role in obtaining accurate imaging and data is clarified and the satellites concerned with water quality monitoring are pointed out. Considering the important role of groundwater in arid regions, the use of GRACE Mission data in Egypt is mentioned. Moreover, key influences on water quality in Egypt are discussed and the relation of water quality to water scarcity in the country and ways to preserve water quality is being discussed. Furthermore, the potential of space-based monitoring used to address water issues from hydrological to water resources issues in the country or region is pointed out. The challenges of the use of space technology for hydrology and water-related topics in the MENA region is also discussed. Light is shed on the project done by NASA to recycle astronauts’ waste into energy and power. Sustainability is of a great importance to or communities, and thus it is discussed how sustainable it is to build cities in the desert, or to divert water to where people are instead of moving people to existing water sources. Finally, a discussion about ways we can employ to improve awareness and capacity building on the use of space technology for water and challenges in this field are discussed.
How do you personally and professionally relate to water?
Growing up in Israel, water scarcity was a constant backdrop to my childhood. The arid climate and frequent droughts shaped my relationship with water from an early age. One vivid memory that remains stamped in my mind is the series of TV campaigns highlighting the importance of water conservation. I recall sitting in front of the television, concerned by the urgency conveyed in those campaigns. The images of dry landscapes and the emphasis on every drop of water as precious left a lasting impression.
Sawaid Abbas, Assistant Professor at the Centre for Geographical Information System, University of the Punjab, Lahore, Pakistan discussed his extensive work in addressing water-related challenges through the nexus between smart sensing and space technologies. His thematic focus spans water scarcity, food security, climate risks, and environmental monitoring with an emphasis on the Asia-Pacific region, including Pakistan and China. Key Sustainable Development Goals (SDGs) guiding his work include SDG2 (Zero Hunger), SDG13 (Climate Action), SDG15 (Life on Land), and SDG11 (Sustainable Cities and Communities).
Abbas's passion for water emerged during his early career at the World Wide Fund for Nature (WWF), where he was involved in Pakistan’s Wetland Program and witnessed the impact of water on associated ecosystems. This sparked his interest in understanding and managing water, forestry, and wildlife resources. He recently studied coastal ecosystems and their responses to climate and anthropogenic stressors in the Asia-Pacific region. The Living Indus – Investing in Ecological Restoration has become a new focus of interest for him, addressing sustainability challenges related to food security, river basin management, and efficient water use in alignment with the UN Decade of Ocean objectives.
Abbas shared his fascination with water, recognizing its complex and essential nature. He is captivated by its beauty in all forms and acknowledges its fundamental importance for life on Earth. This water connection further motivates his commitment to addressing global water challenges and promoting sustainable water use through innovative solutions.
Sawaid Abbas's work, stimulated by both professional commitment and personal fascination, stresses the critical role of space technologies, particularly earth observation, smart sensing nexus, and artificial intelligence in addressing water-related challenges. His research contributes to the development of innovative solutions for sustainable water use, environmental protection, and disaster response, aligning with global goals for a more resilient and water-secure future.
Forest cover refers to the extent of land area covered by forests. It can be expressed either as a percentage relative to the total land area or in absolute terms measured in square kilometers or square miles (ScienceDirect). As of 2020, globally, forests account for 31 percent of the land area with roughly half of this area considered relatively intact. The total forest coverage is 4.06 billion hectares.
El 2 de febrero de 2020 celebramos el Día Mundial de los Humedales para concienciar al mundo sobre el papel vital de los humedales para las personas y nuestro planeta. La edición de este año destaca la conexión entre el agua, los humedales y la vida.
Do you know that about 70% of the Earth’s surface is covered in water, yet it remains unmapped? As NASA oceanographer Dr. Gene Feldman said,
“We have better maps of the surface of Mars and the moon than we do of the bottom of the ocean.”
But can all these vast blue portions of the universe be explored and mapped like the Mars, which is 54.6 million kilometers away from us, but have nearly 90% of its surface mapped? "Well, that's the million-dollar question, isn't it?"
Have you ever heard the phrase "All the rivers run into the sea"? In most cases, this statement holds, with one exception: rivers that end up in lakes. If you imagine mountain ranges as the walls of a bathtub, the ocean is like the bottom of the bathtub, collecting all the water from the bathtub. No matter where you live, you inhabit a land area where all the water, above and below ground, converges into a common body of water (Figure 1). We call this area a watershed. Watersheds vary in size.
As population becomes larger the demand for water soars, including water needed for domestic, industrial and municipal uses (Mogelgaard 2011). One example of that, is India, where on 20 June 2019 the city of Chennai almost run out of water. Satellite images show the extent of the water shortage in the city (figure 1). While people are queuing up to get water from water trucks that transfer water to the city, the greatest struggle is taking place in the city’s municipal buildings and businesses. Hospitals are facing the threat of not having enough water to treat patients and to clean equipment, and businesses are forced to shut down and wait until the crisis is over.
Snow has a crucial contribution to Earth’s climate and helps to maintain the Earth’s temperature. When snow melts, it aids in providing water to people for their livelihood and affects the survival of animals and plants (National Snow and Ice Data Center). Approximately 1.2 billion people - constituting one-sixth of the global population - depend on snowmelt water for both agricultural activities and human consumption (Barnett et al., 2005).
Recently, in July 2021, destructive and deadly floods occurred in Western Europe. The estimated insured losses only in Germany could approach 5 billion Euros (AIR Worldwide, 2021). However, the total amount of the damage is currently not foreseeable due to the variety and complexity of the damage patterns and the unbelievable extent of the disaster. It seems the socio-economic losses will dramatically increase and break a new record in the insurance industry after evaluating the complete record of damages’ reports (see Figure 1).
As population becomes larger the demand for water soars, including water needed for domestic, industrial and municipal uses (Mogelgaard 2011). One example of that, is India, where on 20 June 2019 the city of Chennai almost run out of water. Satellite images show the extent of the water shortage in the city (figure 1). While people are queuing up to get water from water trucks that transfer water to the city, the greatest struggle is taking place in the city’s municipal buildings and businesses. Hospitals are facing the threat of not having enough water to treat patients and to clean equipment, and businesses are forced to shut down and wait until the crisis is over.
From 10 to 13 May 2022, the United Nations Officer for Outer Space Affairs organized the 5th International conference on the use of space technology for water resources management. The conference was hosted in a hybrid format in Accra, Ghana, by the University of Energy and Natural Resources, Sunyani on behalf of the Government of Ghana. The event was attended by several senior government representatives of the host country including Dr. Mahamudu Bawumia, Vice President of the Republic of Ghana, the Honorary Minister of Education Dr.
Climate has become a subject of global concern, especially in recent decades. Climate models are practical tools that can simulate physical processes and predict future change. However, because of the complexity of atmospheric, ocean, and land processes, scientists are faced with significantly large uncertainties in climate models. As world leaders grapple with the urgency of climate action, the role of space-based technology and data has become increasingly critical. Various observed climatic variables (e.g.
In 2019, floods caused 43.5% of all deaths due to natural disasters and thereby represent the deadliest type of disaster with an increasing number of events compared to previous years (CRED, 2019). Floods furthermore lead to the highest number of people affected compared to other disasters as they affect human activities and the economy (CRED, 2019; Elagib et al. 2019).
Plus la population augmente, plus la demande en eau augmente, notamment l'eau nécessaire aux usages domestiques, industriels et municipaux (Mogelgaard 2011). L'Inde en est un bon exemple : le 20 juin 2019, la ville de Chennai a failli manquer d'eau. Des images satellites ont montré l'ampleur de la pénurie d'eau dans la ville (schéma 1). Alors que les habitants faisaient la queue pour de l'eau stockée dans des camions-citernes qui la rendaient disponible dans la ville, le véritable défi de gestion concernait les bâtiments municipaux et les entreprises de la ville. La pénurie d´eau a gravement affecté la capacité des hôpitaux à soigner les patients et à nettoyer les équipements, et a contraint les entreprises à fermer leurs portes jusqu'à la fin de la crise.
The impacts of climate change are ever more apparent. The frequency and scale of devastation and destruction of weather hazards are on an increasing trend. According to the latest Intergovernmental Panel on Climate Change Report (IPCC, 2021) climate change is intensifying the water cycle. This will cause more intense droughts in many regions. Moreover, water-related extremes impact the quality of life disproportionately strong. Drought accounts for 25% of all losses from weather-related disasters in the United States of America (Hayes et al., 2012).
On 2 February 2020, we celebrate World Wetlands Day to raise global awareness about the vital role of wetlands for people and our planet. This year’s edition highlights the connection between water, wetlands, and life.
Since ancient times, people have established communities in river deltas because it provides water, fertile land, and transportation access, making them an ideal place to live. This pattern has been carried forward to the present. With nearly 6 billion people living in river deltas, they are one of the most densely populated places on Earth (Kuenzer and Renaud, 2011). However, they are facing threats such as climate change, sea level rise, land use changes, and ecosystem degradation.
Rebecca Gustine is currently a PhD student at Washington State University in the Department of Civil and Environmental Engineering studying civil engineering with a focus on water resources. She is also an intern at NASA JPL where she is a member of the ECOSTRESS applied science mission team working with local agencies to inform resource management and conservation efforts. We talked to her about her interdisciplinary research experiences through her undergraduate and graduate school.
Lukas Graf used to take clean drinking water for granted. As he grew up, and conversations around climate change and environmental destruction became increasingly intense, he started to become more aware of the importance and scarcity of water resources. Around a similar time, he became increasingly enthusiastic about space, realising that space technologies could be used to explore many of the pressing topics that he was interested in. He has participated in research projects that used remote sensing methods to study the effects of global change on ecosystems and especially on water availability. Lukas is interested in a range of topics from virtual water and water quality to irrigation and agriculture. He believes that interdisciplinary approaches and mutual dialog with societies and stakeholders need to be deepened for sustained resource management.
In this interview, we discuss how time-series of satellite data can be used to monitor the environmental, and more specifically the water domain, using the data cube technology.
Ayan Santos Fleischmann is a hydrologist with a particular interest in wetlands and large-scale basins, mainly in South America and Africa, and in the context of human impacts on water resources. His main study approaches involve remote sensing techniques and hydrologic-hydrodynamic modeling, as well as interdisciplinary collaborations with other disciplines such as ecology and social sciences. Currently, he is a researcher at the Mamirauá Institute for Sustainable Development (Tefé, Amazonas, Brazil), where he leads the Research Group in Geospatial Analysis of the Amazonian Environment and Territory. He also leads the Conexões Amazônicas initiative for science communication about the Amazon Basin. Ayan holds a PhD degree from UFRGS, with a collaborative period at Université Toulouse III – Paul Sabatier (France). His Ph. D. thesis focused on the hydrology of the South American wetlands. Ayan holds an Environmental Engineering degree from the Universidade Federal do Rio Grande do Sul (UFRGS), with a research stay at the University of East Anglia in the United Kingdom. In this interview, we talked to him about his career path, the work he has been developing in Brazil with wetlands and floods, and his work in the Amazon River basin.
In the interview, Hafsa Aeman discusses her passion for integrating water resource management with space technologies. She uses remote sensing and AI to tackle challenges like seawater intrusion and coastal erosion, focusing on vulnerable coastal ecosystems. By leveraging satellite data, her work provides critical insights for sustainable water management, crucial for communities impacted by climate change.
Ms Aeman highlights the significant role of space technology in water management, especially through remote sensing, which helps monitor precipitation, soil moisture, and groundwater levels. Her proudest achievement is a publication on seawater intrusion, recognized for its innovative use of AI and remote sensing, contributing to Pakistan’s Living Indus initiative.
At the International Water Management Institute (IWMI), Hafsa’s research integrates AI and remote sensing to optimize water and irrigation management systems. She emphasizes the importance of addressing seawater intrusion, which poses threats to agriculture, ecosystems, and global food security.
She also underscores the role of community engagement in sustainable water management through capacity-building workshops for farmers, promoting smarter irrigation practices. She advocates for leadership opportunities for young scientists and believes AI can revolutionize water management by enabling more accurate and efficient data analysis. Rain, symbolizing renewal and sustenance, is her favorite aggregate state of water.
Professor Wagner holds a Ph.D. in remote sensing. He gained his experience at renowned institutions, including academia, space agencies and international organisations. He is the Dean of the Faculty for Mathematics and Geoinformation and cofounder of the Earth Observation Data Centre for Water Resources among other affiliations.
The following interview with Dr. Sherine Ahmed El Baradei is focusing on water quality and its relation to space technology. Water is the essence of life. Thus preservation of water quality is of a big concern to human health and to fauna and flora in water bodies. The interview explains what is water quality and what are water quality parameters of water bodies. Furthermore, the importance of using space technologies and applications in contributing to water quality monitoring and determination of hydraulic and hydrologic conditions is thoroughly discussed. For example, temporal resolution of satellites and their role in obtaining accurate imaging and data is clarified and the satellites concerned with water quality monitoring are pointed out. Considering the important role of groundwater in arid regions, the use of GRACE Mission data in Egypt is mentioned. Moreover, key influences on water quality in Egypt are discussed and the relation of water quality to water scarcity in the country and ways to preserve water quality is being discussed. Furthermore, the potential of space-based monitoring used to address water issues from hydrological to water resources issues in the country or region is pointed out. The challenges of the use of space technology for hydrology and water-related topics in the MENA region is also discussed. Light is shed on the project done by NASA to recycle astronauts’ waste into energy and power. Sustainability is of a great importance to or communities, and thus it is discussed how sustainable it is to build cities in the desert, or to divert water to where people are instead of moving people to existing water sources. Finally, a discussion about ways we can employ to improve awareness and capacity building on the use of space technology for water and challenges in this field are discussed.
How do you personally and professionally relate to water?
Growing up in Israel, water scarcity was a constant backdrop to my childhood. The arid climate and frequent droughts shaped my relationship with water from an early age. One vivid memory that remains stamped in my mind is the series of TV campaigns highlighting the importance of water conservation. I recall sitting in front of the television, concerned by the urgency conveyed in those campaigns. The images of dry landscapes and the emphasis on every drop of water as precious left a lasting impression.
Padmi is currently reading for her Ph.D. focusing on Nature-based Solutions (NbS) for climate change risk reduction and resilience cities. She believes NbS can reduce hydro-meteorological hazards such as floods, droughts, and landslides in the long run. It is a strategy to minimize the gaps in decarbonizing and reducing greenhouse gases and a path to Net-zero cities. NbS, are actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, benefiting people and nature (IUCN & World Bank, 2022). Ecosystem-based adaptation (EbA), ecosystem-based disaster risk reduction (Eco-DRR), ecosystem-based mitigation (EbM), and green infrastructure are some branches under the umbrella of NbS. NbS include conserving forests, mangroves, and wetland ecosystems, halting deforestation, increasing reforestation, climate-smart agriculture, and opening green spaces. According to her, space technology is integral to planning, monitoring, and analysis. Space technology today is so advanced that it can capture and predict changes in the water cycle, climate change variables and so forth. Remote sensing data and satellite-derived information are essential in obtaining accurate data on a specific site anywhere on the Earth's surface. Most recently, she has been involved in projects utilizing urban NbS such as the conservation of Ramsar-Colombo to mitigate urban floods and adapt to climate change. To conduct wetland inventories, space-based data and GIS techniques can be utilized to detect the presence of wetlands and/or water in wetlands. Though there can be some challenges encountered such as limited coverage of specific areas within the wetland, clouds often hiding images, and the low resolution of data making it difficult to differentiate floral species. Unmanned Aerial Vehicles (drones) can provide enhanced accuracy and consistency in measuring wetlands, as well as the presence of water in wetlands, using space technologies. Data and technologies from space contribute to watershed management, sediment measurements and many other environmental aspects.
Shaima Almeer is a young Bahraini lady that works as a senior space data analyst at the National Space Science Agency. At NSSA she is responsible for acquiring data from satellite images and analyzing them into meaningful information aiming to serve more than 21 governmental entities. Shaima is also committed to publishing scientific research papers, aiming to support and spread the knowledge to others.
In addition, she has recently graduated from a fellowship program at Bahrain’s Prime Minister’s Office. Shaima was selected among more than 1000 individuals to spend a year working as full-time research fellow, benefiting from advanced training in writing skills, research methods and policy analysis. The fellowship forms a core pillar of HRH the CP and PM initiative to improve national skills and support the Kingdom’s growing cadre of young government professionals. Part of the fellowship program is to work as a supervisor at the COVID-19 War Room.
Shaima has obtained her bachelor’s degree in the field of Information and Communication Technology from Bahrain Polytechnic and is currently pursuing her Msc. degree in Management Information System from the University College of Bahrain.
Prior to obtaining her bachelor’s degree, Shaima was titled as the first robotics programmer in the Kingdom of Bahrain and also won the title “Pioneering Women in Technology”. She has recently also won the “Women Innovator of the Year 2023 Award” in New Dehli.
Sawaid Abbas, Assistant Professor at the Centre for Geographical Information System, University of the Punjab, Lahore, Pakistan discussed his extensive work in addressing water-related challenges through the nexus between smart sensing and space technologies. His thematic focus spans water scarcity, food security, climate risks, and environmental monitoring with an emphasis on the Asia-Pacific region, including Pakistan and China. Key Sustainable Development Goals (SDGs) guiding his work include SDG2 (Zero Hunger), SDG13 (Climate Action), SDG15 (Life on Land), and SDG11 (Sustainable Cities and Communities).
Abbas's passion for water emerged during his early career at the World Wide Fund for Nature (WWF), where he was involved in Pakistan’s Wetland Program and witnessed the impact of water on associated ecosystems. This sparked his interest in understanding and managing water, forestry, and wildlife resources. He recently studied coastal ecosystems and their responses to climate and anthropogenic stressors in the Asia-Pacific region. The Living Indus – Investing in Ecological Restoration has become a new focus of interest for him, addressing sustainability challenges related to food security, river basin management, and efficient water use in alignment with the UN Decade of Ocean objectives.
Abbas shared his fascination with water, recognizing its complex and essential nature. He is captivated by its beauty in all forms and acknowledges its fundamental importance for life on Earth. This water connection further motivates his commitment to addressing global water challenges and promoting sustainable water use through innovative solutions.
Sawaid Abbas's work, stimulated by both professional commitment and personal fascination, stresses the critical role of space technologies, particularly earth observation, smart sensing nexus, and artificial intelligence in addressing water-related challenges. His research contributes to the development of innovative solutions for sustainable water use, environmental protection, and disaster response, aligning with global goals for a more resilient and water-secure future.
How do your professional career and/or your personal experience relate to space technologies and water?
My interest in water is deeply rooted in my personal life. I grew up on an island in the Philippines where a lot of people depend on water as a source of livelihood. From fishing in the open sea to fish breeding, water has always been a source of income at home. Aside from this, the small community where I grew up struggled with access to running water.
How do you professionally relate to water and/or space technologies?
As a hydrologist, I’ve always been fascinated by the potential of space technologies in transforming water resource management. My work integrates satellite-based Earth Observation (EO) data with hydrological modelling, particularly for drought and flood monitoring, and water availability assessments in regions with scarce ground data. EO technologies allow me to capture real-time, high-resolution data, critical for climate resilience, especially in Sub-Saharan Africa.
Claudia Ruz Vargas is a civil engineer, graduated from the University of Santiago, Chile, with an international master’s degree in Groundwater and Global change. Her master thesis focused on groundwater modelling for recharge and saline intrusion risk assessment under climate change scenarios, in Cape Verde. Claudia has six years of work experience as a project engineer and researcher. She is currently a researcher at the International Groundwater Resources Assessment Centre (IGRAC), where she is involved in projects of high impact on the groundwater sector. In this interview, we talked to her about her career path, and how she has contributed to an improved and more sustainable management of groundwater resources, at a regional and global levels.
Short description of community and hydrogeology of the area
Yucatan is located in the southeast portion of Mexico. The total area of Yucatan is 124, 409 km2 and the population (by 2018) was ca. 2.1 million inhabitants. The landscape of the area is defined by a highly permeable karstic soil, a notable absence of rivers or permanent freshwater resources in the surface, and a high number of natural wells or sinkholes (locally called cenotes, from the Maya word t´sonot).
Are you interested in leveraging public Earth observation data and visualization techniques to contribute to SDGS? You have until 26 January 2024 to sign-up to the PaleBlueDot challenge organized on behalf of NASA and the US mission to international organization in Vienna.
Are you an indigenous women or in touch with indigenous communities. Don't miss this chance to make the voices of indigenous women heard. We would like to contribute to closing the digital divide, as well as to raise the voices of indigenous women on their views realated to water and the environment.
Spread the word about this opportunity so we can reach as many Indigenous women as possible.
San José, Costa Rica, 7-10 May 2024 (with a possibility of online attendance)
Hosted and supported by the Inter-American Institute for Cooperation on Agriculture (IICA)
Co-sponsored by the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW)
Venue: Inter-American Institute for Cooperation on Agriculture Headquarters, San José, Costa Rica
Ayan Santos Fleischmann is a hydrologist with a particular interest in wetlands and large-scale basins, mainly in South America and Africa, and in the context of human impacts on water resources. His main study approaches involve remote sensing techniques and hydrologic-hydrodynamic modeling, as well as interdisciplinary collaborations with other disciplines such as ecology and social sciences. Currently, he is a researcher at the Mamirauá Institute for Sustainable Development (Tefé, Amazonas, Brazil), where he leads the Research Group in Geospatial Analysis of the Amazonian Environment and Territory. He also leads the Conexões Amazônicas initiative for science communication about the Amazon Basin. Ayan holds a PhD degree from UFRGS, with a collaborative period at Université Toulouse III – Paul Sabatier (France). His Ph. D. thesis focused on the hydrology of the South American wetlands. Ayan holds an Environmental Engineering degree from the Universidade Federal do Rio Grande do Sul (UFRGS), with a research stay at the University of East Anglia in the United Kingdom. In this interview, we talked to him about his career path, the work he has been developing in Brazil with wetlands and floods, and his work in the Amazon River basin.
In the interview, Hafsa Aeman discusses her passion for integrating water resource management with space technologies. She uses remote sensing and AI to tackle challenges like seawater intrusion and coastal erosion, focusing on vulnerable coastal ecosystems. By leveraging satellite data, her work provides critical insights for sustainable water management, crucial for communities impacted by climate change.
Ms Aeman highlights the significant role of space technology in water management, especially through remote sensing, which helps monitor precipitation, soil moisture, and groundwater levels. Her proudest achievement is a publication on seawater intrusion, recognized for its innovative use of AI and remote sensing, contributing to Pakistan’s Living Indus initiative.
At the International Water Management Institute (IWMI), Hafsa’s research integrates AI and remote sensing to optimize water and irrigation management systems. She emphasizes the importance of addressing seawater intrusion, which poses threats to agriculture, ecosystems, and global food security.
She also underscores the role of community engagement in sustainable water management through capacity-building workshops for farmers, promoting smarter irrigation practices. She advocates for leadership opportunities for young scientists and believes AI can revolutionize water management by enabling more accurate and efficient data analysis. Rain, symbolizing renewal and sustenance, is her favorite aggregate state of water.
Padmi is currently reading for her Ph.D. focusing on Nature-based Solutions (NbS) for climate change risk reduction and resilience cities. She believes NbS can reduce hydro-meteorological hazards such as floods, droughts, and landslides in the long run. It is a strategy to minimize the gaps in decarbonizing and reducing greenhouse gases and a path to Net-zero cities. NbS, are actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, benefiting people and nature (IUCN & World Bank, 2022). Ecosystem-based adaptation (EbA), ecosystem-based disaster risk reduction (Eco-DRR), ecosystem-based mitigation (EbM), and green infrastructure are some branches under the umbrella of NbS. NbS include conserving forests, mangroves, and wetland ecosystems, halting deforestation, increasing reforestation, climate-smart agriculture, and opening green spaces. According to her, space technology is integral to planning, monitoring, and analysis. Space technology today is so advanced that it can capture and predict changes in the water cycle, climate change variables and so forth. Remote sensing data and satellite-derived information are essential in obtaining accurate data on a specific site anywhere on the Earth's surface. Most recently, she has been involved in projects utilizing urban NbS such as the conservation of Ramsar-Colombo to mitigate urban floods and adapt to climate change. To conduct wetland inventories, space-based data and GIS techniques can be utilized to detect the presence of wetlands and/or water in wetlands. Though there can be some challenges encountered such as limited coverage of specific areas within the wetland, clouds often hiding images, and the low resolution of data making it difficult to differentiate floral species. Unmanned Aerial Vehicles (drones) can provide enhanced accuracy and consistency in measuring wetlands, as well as the presence of water in wetlands, using space technologies. Data and technologies from space contribute to watershed management, sediment measurements and many other environmental aspects.
Shaima Almeer is a young Bahraini lady that works as a senior space data analyst at the National Space Science Agency. At NSSA she is responsible for acquiring data from satellite images and analyzing them into meaningful information aiming to serve more than 21 governmental entities. Shaima is also committed to publishing scientific research papers, aiming to support and spread the knowledge to others.
In addition, she has recently graduated from a fellowship program at Bahrain’s Prime Minister’s Office. Shaima was selected among more than 1000 individuals to spend a year working as full-time research fellow, benefiting from advanced training in writing skills, research methods and policy analysis. The fellowship forms a core pillar of HRH the CP and PM initiative to improve national skills and support the Kingdom’s growing cadre of young government professionals. Part of the fellowship program is to work as a supervisor at the COVID-19 War Room.
Shaima has obtained her bachelor’s degree in the field of Information and Communication Technology from Bahrain Polytechnic and is currently pursuing her Msc. degree in Management Information System from the University College of Bahrain.
Prior to obtaining her bachelor’s degree, Shaima was titled as the first robotics programmer in the Kingdom of Bahrain and also won the title “Pioneering Women in Technology”. She has recently also won the “Women Innovator of the Year 2023 Award” in New Dehli.
How do your professional career and/or your personal experience relate to space technologies and water?
My interest in water is deeply rooted in my personal life. I grew up on an island in the Philippines where a lot of people depend on water as a source of livelihood. From fishing in the open sea to fish breeding, water has always been a source of income at home. Aside from this, the small community where I grew up struggled with access to running water.
How do you professionally relate to water and/or space technologies?
As a hydrologist, I’ve always been fascinated by the potential of space technologies in transforming water resource management. My work integrates satellite-based Earth Observation (EO) data with hydrological modelling, particularly for drought and flood monitoring, and water availability assessments in regions with scarce ground data. EO technologies allow me to capture real-time, high-resolution data, critical for climate resilience, especially in Sub-Saharan Africa.
Claudia Ruz Vargas is a civil engineer, graduated from the University of Santiago, Chile, with an international master’s degree in Groundwater and Global change. Her master thesis focused on groundwater modelling for recharge and saline intrusion risk assessment under climate change scenarios, in Cape Verde. Claudia has six years of work experience as a project engineer and researcher. She is currently a researcher at the International Groundwater Resources Assessment Centre (IGRAC), where she is involved in projects of high impact on the groundwater sector. In this interview, we talked to her about her career path, and how she has contributed to an improved and more sustainable management of groundwater resources, at a regional and global levels.
Rebecca Gustine is currently a PhD student at Washington State University in the Department of Civil and Environmental Engineering studying civil engineering with a focus on water resources. She is also an intern at NASA JPL where she is a member of the ECOSTRESS applied science mission team working with local agencies to inform resource management and conservation efforts. We talked to her about her interdisciplinary research experiences through her undergraduate and graduate school.
Lukas Graf used to take clean drinking water for granted. As he grew up, and conversations around climate change and environmental destruction became increasingly intense, he started to become more aware of the importance and scarcity of water resources. Around a similar time, he became increasingly enthusiastic about space, realising that space technologies could be used to explore many of the pressing topics that he was interested in. He has participated in research projects that used remote sensing methods to study the effects of global change on ecosystems and especially on water availability. Lukas is interested in a range of topics from virtual water and water quality to irrigation and agriculture. He believes that interdisciplinary approaches and mutual dialog with societies and stakeholders need to be deepened for sustained resource management.
Space4Water stakeholders, featured young professionals and professionals, join us in Vienna at the 1st Space4Water Stakeholder Meeting.
Dates and location
The workshop will take place on 27-28 October 2022 at the Vienna International Centre, with an opportunity to host it online, should COVID prevent travels in October.
Registration
To be considered for participation Space4Water stakeholders and featured professionals can register here.
The United Nations Office for Outer Space Affairs (UNOOSA) and the Government of Ghana are jointly organizing a Conference with the support of the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW) to promote the use of space technology in water management to the benefit of developing countries.
The Conference will be held in Accra, Ghana, from 10- 13 May 2022, hosted by the University of Energy and Natural Resources on behalf of the Government of Ghana.
This event is restricted to Space4Water stakeholders, featured professionals, young professionals and representatives of Indigenous communities featured on the portal.
Registration for speakers submitting technical presentations closes on 15 April 2023.
Registration for all other participants closes on 30 April 2023.
The 2ndSpace4Water Stakeholder Meeting was hosted by the United Nations Office for Outer Space Affairswith its partner, the Prince Sultan Bin Abdulaziz InternationalPrizeforWateronline 11–12
What began as the development of a cubesat (BIRD-5) at the Kyushu Institute of Technology in Japan took off on a spacecraft to the International Space Station from the Mid-Atlantic Regional Spaceport at the National Aeronautics and Space Administration's (NASA's) Wallops Flight Facility in Virginia, US on 6 November 2022 (watch the video of the launch of the CRS2 NG-18 (Cygnus) Mission (Antares), in the video below the article).
The Committee on the Peaceful Uses of Outer Space in its sixty-fourth session, which took place form 25 August-3 September 2021 in Vienna, adopted the below on its agenda item "Space and water":
The Committee considered the agenda item entitled “Space and water”, in accordance with General Assembly resolution 75/92.
This event is restricted to Space4Water stakeholders, featured professionals, young professionals and representatives of Indigenous communities featured on the portal.
The Office for Outer Space Affairs and the Prince Sultan Bin Abdulaziz International Prize for Water organized the third Space4Water stakeholder meeting hosted in Vienna on 24 and 25 October 2023 in a hybrid format.
The present report describes the objectives of the meeting and includes details of attendance and a summary of the presentations, discussions and interactive sessions, as well as the conclusions.
Short description of community and hydrogeology of the area
Yucatan is located in the southeast portion of Mexico. The total area of Yucatan is 124, 409 km2 and the population (by 2018) was ca. 2.1 million inhabitants. The landscape of the area is defined by a highly permeable karstic soil, a notable absence of rivers or permanent freshwater resources in the surface, and a high number of natural wells or sinkholes (locally called cenotes, from the Maya word t´sonot).
Develop skills to use remote sensing for land cover classification, estimating evapotranspiration, water productivity, irrigation performance assessment & irrigation water accounting.
Water Productivity and Water Accounting using WaPOR (the portal to monitor Water Productivity through Open-access of Remotely sensed derived data) is an open online course targeting practitioners and academicians who are working in water resources management and related fields and have interest in applying open access remote sensing data and other open data to assess the water resources situation and water productivity and the extent to which water productivity increases have an effect on different water users in a river basin context.
These webinars are available for viewing at any time. They provide basic information about the fundamentals of remote sensing, and are often a prerequisite for other ARSET trainings.
Welcome to the open access course Use of FAO WaPOR Portal from IHE Delft Institute for Water Education and the Food and Agricultural Organization of the United Nations (FAO). WaPOR is the portal to monitor Water Productivity through Open-access of Remotely sensed derived data and has been developed by FAO. The FAO’s WaPOR programme assists countries in monitoring water productivity, identifying water productivity gaps, proposing solutions to reduce these gaps, and contributing to a sustainable increase in agricultural production.
This online training introduces participants to the data and applications of the Global Precipitation Measurement (GPM) mission. GPM is an international satellite mission that provides next-generation observations of rain and snow worldwide every three hours.
Data recipes are video tutorials that include step-by-step instructions to help users learn how to discover, access, subset, visualize and use Earth science data, information, tools and services. These recipes cover many different data products across the Earth science disciplines and different processing languages/software.
register here until 21 August 2022 - if you would like to be considered for funding
In many places around the world women are responsible for water collection, a responsibility that globally takes them 200 million hours annually. It often leaves them with little to no time for school, work or to spend time with their family. Furthermore, indigenous communities' cultural heritage and knowledge about natural resources, including water, urgently needs to be considered and protected.
Currently, WHOS makes available three data portals allowing users to easily leverage common WHOS functionalities such as data discovery and data access, on the web by means of common web browsers. For more information on WHOS data and available tools, please refer to the Section WHOS web services and supported tools.
WHOS-Global Portal provides all hydrometeorological data shared through WHOS. WHOS-Global Portal is implemented using the Water Data Explorer application.
e-shape is a unique initiative that brings together decades of public investment in Earth Observation and in cloud capabilities into services for the decision-makers, the citizens, the industry and the researchers. It allows Europe to position itself as global force in Earth observation through leveraging Copernicus, making use of existing European capacities and improving user uptake of the data from GEO assets. EuroGEO, as Europe's contribution to the Global Earth Observation System of Systems (GEOSS), aims at bringing together Earth Observation resources in Europe.
The emerging demand of GIS and Space Applications for Climate Change studies for the socio-economic development of Pakistan along with Government of Pakistan Vision 2025, Space Vision 2047 of National Space Agency of Pakistan, and achievement of UN Sustainable Development Goals (SDGs) impelled the Higher Education Commission of Pakistan (HEC) to establish Remote Sensing, GIS and Climatic Research Lab (RSGCRL) at University of the Punjab, Lahore, Pakistan.
Satsense Solutions Limited is a start-up company that uses satellite earth observation to develop business and governance solutions addressing the challenges of resource management, climate change and sustainable development. It has developed and deployed several applications in the Water Resources, Hydropower, Mining and Infrastructure sectors. These include assessments of eutrophication levels in lakes and reservoirs and sedimentation rates at hydropower plants. Identification of pollution in rivers, acid mine drainage and tailings at mining sites.
The Institute of Forestry, Pokhara Campus (IOF-PC), Quality Assurance Accreditation (QAA) certified institution by the UGC, Nepal in September 2022, was established in 1981 as the Central Campus of the Institute of Forestry, one of the five technical institutes under Tribhuvan University, Nepal. The IOF, founded as Nepal Forestry Institute in Singh Durbar, Kathmandu, in 1947, was shifted to Suping (BhimPhedi) in 1957 and again to Hetauda in 1965.
The United Nations University Institute on Comparative Regional Integration Studies (UNU-CRIS) is a research and training institute of the United Nations University. UNU is a global network of institutes and programs engaged in research and capacity development to support the universal goals of the UN. It brings together leading scholars from around the world with a view to generate strong and innovative knowledge on how to tackle pressing global problems. UNU-CRIS focuses on the study of processes of global cooperation and regional integration and their implications.
ISME-HYDRO is a platform that helps monitor water resources of dams, thus enabling water resources managers to better execute their duties. It employs linked data infrastructure integrating in-situ measurements, satellite data, GIS data, domain knowledge, deep learning, and provides capabilities of forecasting of water volumes, of alerting for hazardous situations, of interaction with the data through four kinds of search and GIS interactivity. The platform is easily extendable and customizable.
Note: this description is a work in progress developed by the collaborating entities in a workshop. If you would like to contribute reach out to office@space4water.org, or your trusted Space4Water point of contact.
Required Software
Google Earth Engine
Google Earth Engine Apps - Global Forest Change
1. Data collection
To collect historic and high-resolution up-to-date imagery over the area, UNOOSA contacted the Land and Information New Zealand Data Service, which provided both historical aerial imagery and LIDAR data sources.
HydroSHEDS: The core data products of HydroSHEDS are a series of gridded datasets designed for use in hydro-environmental model development and custom GIS applications. Data layers include the original digital elevation model (DEM) that underpins HydroSHEDS, a hydrologically conditioned version of the DEM, the derived flow direction and flow accumulation grids, as well as land mask and sink grids. These data products form the digital foundation of the derived secondary data products. HydroSHEDS core data products are currently available for HydroSHEDS v1 only, which is mostly based on SRTM elevation data. HydroSHEDS v2, which is derived from TanDEM-X elevation data, is currently under development and is scheduled for release in 2022.
A digital elevation model (DEM) is available at 30m resolution by Copernicus is available at the Terrascope website.
2. Mapping the historical land use and land cover surrounding the river (in progress)
No other change in the land use is observed upstream the Ngutunui region between 1985-1999.
According to the vegetation cover analysis, there have not been many changes over the past 20+ years. It has been observed that the Manori community and the surrounding area have maintained almost the same vegetation cover, however some patches adjacent to the community boundary downstream have caused some distractions.
Limitation- In the case of a small land mass and narrow river, limits many satellite-based analyses.
Other methods - Conducting a community survey
To obtain historical knowledge on the identification of vegetation, tree species, a community survey appears to be the only option available, since the challenge requires data extending back 50 years. While space-based data (aerial photos) are available, the possibility of identifying each species of tree is very limited, because of the canopy layer, understory plant species cannot be seen.
This approach will enable to gather data on dominant plant species, their abundance, tree diameters, and the boundaries between different vegetation.
Data obtained from the community survey provide a valuable historical record of vegetation patterns over the decades and help identify any changes or disruptions.
"i-nature" app- tree species can be identified by taking a simple picture of a leaf. The app then provides a detailed description of the identified tree species, including information about its characteristics and habitat.
Further information on vegetation identification
Using NDVI allows for identifying the type of vegetation but not the specific species. One can see whether the type of vegetation has changed from trees to grassland, but specific plants cannot be seen.
Retrolense provides aerial photographs taken from an aeroplane at which the relevant bands for NDVI calculation (infrared and red) are missing.
We can examine vegetation cover over the last 30+ years using NDVI with Landsat data.
A study called Aerial photography for assessing vegetation change: A Review of applications and the relevance of findings for Australian vegetation history by Fensham and Fairfax published in 2022 in the Australian Journal of Botany and on the CSIRO page is accessible here.
Note: this description is a work in progress developed by the collaborating entities in a workshop. If you would like to contribute reach out to office@space4water.org, or your trusted Space4Water point of contact.
The solution approach begins with identifying the region's main rivers and understanding their hydrology using mapping and geoprocessing tools. After understanding the hydrography of the area and mapping the surface water extent river course through the building a hydrographic dataset, multiple image sources are used to map the historical land use and land cover surrounding the river.
PostGIS Spatial Database System https://postgis.net/
PgHydro extension for PostgreSQL/PostGIS http://pghydro.org/
PgHydro Plugin for QGIS https://plugins.qgis.org/plugins/PghydroTools/
Data
Forest And Buildings removed Copernicus DEM
Publications
see reference in the bibliography below.
2. Steps to the solution & status
Overivew
Plot the Region of Interest (completed)
Identify the region's main rivers and understand their hydrology (completed);
Identify the region's potential flood areas using H.A.N.D.;
Build a hydrography dataset (completed);
Identify multiple image sources for land cover analysis (completed);
Map the historical land use and land cover surrounding the river (in progress);
Step-by-step
1. Plot the Region of Interest (completed)
Download and install QGIS to plot the KML files of the region of interest
2. Identify the region's main rivers and understand their hydrology (completed)
Download the FABDEM data for the Region of Interest.
FABDEM (Forest And Buildings removed Copernicus DEM) is a global elevation map that removes building and tree height biases from the Copernicus GLO 30 Digital Elevation Model (DEM) (https://data.bris.ac.uk/data/dataset/25wfy0f9ukoge2gs7a5mqpq2j7).
Download and Install TerraHidro 5 - Console applications (https://www.dpi.inpe.br/terrahidro/doku.php) to extract the hydrograph products derived from the FABDEM to understand the hydrography setup of the area (Flow direction, flow accumulation and drainage lines and areas, H.A.N.D.).
3. Identify the region's potential flood areas using H.A.N.D.
Building on Nobre et. al (2011) in which the HAND terrain model that "normalizes topography according to the local relative heights found along the drainage network, and in this way, presents the topology of the relative soil gravitational potentials, or local draining potentials" is introduced by the authors.
4. Build a hydrography dataset (completed)
Download and instal PostgreSQL/PostGIS Spatial Database System (https://www.postgresql.org/) (https://postgis.net/), PgHydro extension for PostgreSQL/PostGIS (http://pghydro.org/) and PgHydro Plugin for QGIS;(https://plugins.qgis.org/plugins/PghydroTools/).
Build the Hydrograph Dataset;(https://www.youtube.com/channel/UCgkCUQ-i72bBY41a1bhVWyw) using the Drainage Lines and Drainage Areas extracted from FABDEM;
Information like drainage area, upstream area, drainage line length and distance to sea information are now available.
5. Identify multiple image sources for landing cover analysis (completed);
To collect historic and high-resolution up-to-date imagery over the area, UNOOSA contacted the Land and Information New Zealand Data Service, which provided both historical aerial imagery and LIDAR data sources.
Historic data for the relevant land patch can be accessed via the Retrolens New Zealand Service (https://retrolens.co.nz/Map/#/1784971.9859981549/5783474.532151884/1786387.2653498782/5784857.564632303/2193/12).
Up-to-date aerial photos of the area can be accessed here at the New Zealand Data Service. Tile 503 and 603 are the ones of interest (https://data.linz.govt.nz/layer/112048-waikato-03m-rural-aerial-photos-index-tiles-2021-2023/history/).
Relevant Landsat data are available from 1989. For the study area, Landsat 7 data is available from 2 July 1999, and Landsat 4 from 2 February 1989;
Google Earth Engine Apps - Global Forest Change (https://google.earthengine.app/view/forest-change)
6. Map the historical land use and land cover surrounding the river (in progress);