Soil moisture

"Water contained in the upper regions near the earth's surface." (National Oceanic and Atmospheric Administration, 2019)

Sources

National Oceanic and Atmospheric Administration (NOAA). Glossary of Hyfrologic Terms. Accessed February 28, 2019. Available at: https://www.nws.noaa.gov/om/hod/SHManual/SHMan014_glossary.htm 

Related Content

Article

Interview with Prof. Wolfgang Wagner

Professor Wagner holds a Ph.D. in remote sensing. He gained his experience at renowned institutions, including academia, space agencies and international organisations. He is the Dean of the Faculty for Mathematics and Geoinformation and cofounder of the Earth Observation Data Centre for Water Resources among other affiliations.

Global Precipitation Mission: Improved, accurate and timely global precipitation information

Continuous and reliable global precipitation information is crucial for myriad of weather, climate and hydrological applications. The importance of precipitation in the form of rain, hail, sleet, snow etc. is known to science and clear to a layman. However, it’s quite tricky to measure past precipitation trends or predicting accurate future forecasts. There are three main categories of precipitation data sets available: ground based, satellite-based and blended products of ground and space data (Climate Data Guide, 2014).

Space technologies in the detection, monitoring and management of groundwater

Global groundwater supplies

Groundwater accounts for 30% of Earth’s freshwater resources (Shiklomanov 1993) (Figure 1) and is estimated to globally provide 36% of potable water, 42% of irrigation water, and 24% of industrial water – indicating its significant value (Global Environment Facility 2021). Groundwater affords a host of benefits, from providing better protection against drought and microbiological contamination than surface waters, to being generally low cost and accessible to many users.

Monitoring runoff using Earth observation data

When rain falls on Earth, the water starts moving and flowing downhill through sewers and rivers as runoff. Runoff is extremely important to recharge surface water bodies and groundwater. Furthermore, runoff changes the landscape by action of erosion. It is an integral part of the water cycle (Earth Science Data Systems 2021). 

Towards new applications of spaceborne technology on flood protection

Recently, in July 2021, destructive and deadly floods occurred in Western Europe. The estimated insured losses only in Germany could approach 5 billion Euros (AIR Worldwide, 2021). However, the total amount of the damage is currently not foreseeable due to the variety and complexity of the damage patterns and the unbelievable extent of the disaster. It seems the socio-economic losses will dramatically increase and break a new record in the insurance industry after evaluating the complete record of damages’ reports (see Figure 1).

Interview with Sarhan Zerouali

Sarhan Zerouali became fascinated with water at a young age through learning about water scarcity around the world and about traditional methods for locating groundwater. In a space applications course Sahran then learnt about space-based technologies. He is currently working on a research project on how remote sensing and other technologies can help alleviate global challenges arising from land degradation. As an aerospace engineer, Sahran has worked with various modern technologies in his work including nanosatellites, artificial intelligence, and feature extraction algorithms.

Interview with Yolanda Lopez-Maldonado

Name of the community

Maya

Short description of community and hydrogeology of the area

Yucatan is located in the southeast portion of Mexico. The total area of Yucatan is 124, 409 km2 and the population (by 2018) was ca. 2.1 million inhabitants. The landscape of the area is defined by a highly permeable karstic soil, a notable absence of rivers or permanent freshwater resources in the surface, and a high number of natural wells or sinkholes (locally called cenotes, from the Maya word t´sonot).  

Interview with Prof. Wolfgang Wagner

Professor Wagner holds a Ph.D. in remote sensing. He gained his experience at renowned institutions, including academia, space agencies and international organisations. He is the Dean of the Faculty for Mathematics and Geoinformation and cofounder of the Earth Observation Data Centre for Water Resources among other affiliations.

Interview with Nokubonga Mazibuko, Commissioner at the Commission on Khoi-San Matters, South Africa

Disclaimer!

I should note that this interview does not aim to compare the San women of Platfontein with the Zulu women from Folweni as these are totally different communities. Also, as much as I am a Commissioner, this interview is not done on behalf of the Commission on Khoi-San Matters (CKSM) but on my personal capacity as a researcher and academic who has an interest on issues pertaining to women.

Interview with Sarhan Zerouali

Sarhan Zerouali became fascinated with water at a young age through learning about water scarcity around the world and about traditional methods for locating groundwater. In a space applications course Sahran then learnt about space-based technologies. He is currently working on a research project on how remote sensing and other technologies can help alleviate global challenges arising from land degradation. As an aerospace engineer, Sahran has worked with various modern technologies in his work including nanosatellites, artificial intelligence, and feature extraction algorithms.

Interview with Yolanda Lopez-Maldonado

Name of the community

Maya

Short description of community and hydrogeology of the area

Yucatan is located in the southeast portion of Mexico. The total area of Yucatan is 124, 409 km2 and the population (by 2018) was ca. 2.1 million inhabitants. The landscape of the area is defined by a highly permeable karstic soil, a notable absence of rivers or permanent freshwater resources in the surface, and a high number of natural wells or sinkholes (locally called cenotes, from the Maya word t´sonot).  

Interview with Nokubonga Mazibuko, Commissioner at the Commission on Khoi-San Matters, South Africa

Disclaimer!

I should note that this interview does not aim to compare the San women of Platfontein with the Zulu women from Folweni as these are totally different communities. Also, as much as I am a Commissioner, this interview is not done on behalf of the Commission on Khoi-San Matters (CKSM) but on my personal capacity as a researcher and academic who has an interest on issues pertaining to women.

Capacity Building and Training Material

ARSET - Water Resource Management Using NASA Earth Science Data

Overview:

This online course covers precipitation (rainfall and snow fraction), soil moisture, evapotranspiration, runoff and streamflow, groundwater, and lake level heights. Participants are introduced to a number of NASA data products.

Objective:

Participants will be able to use NASA remote sensing observations and land-atmosphere models to: 

Digital Earth Africa: Agriculture and Food Security

Digital Earth Africa learning platform

This learning platform helps users understand the significance of Earth observations, explore Digital Earth Africa datasets through an interactive map, and get started on the basics of python coding for spatial analysis.

Digital Earth Africa makes Earth observation (EO) data readily available, delivering decision-ready products to the African continent. Data generated by Digital Earth Africa will provide valuable insights for better decision-making across many areas, including resource management, food security and urbanisation.

ARSET - Applications of Remote Sensing to Soil Moisture and Evapotranspiration

Overview:

NASA's Soil Moisture Active Passive (SMAP) Satellite Mission is providing new soil moisture data, and modelling frameworks are providing new evapotranspiration data. This webinar series is intended to help participants learn about NASA soil moisture and evapotranspiration products and how to access and apply them for water resource management. Throughout the sessions, participants will learn how to monitor and manage water resources with techniques learned in training. The series begins with an introduction to satellite missions and useful data sets.

Water-ForCE Webinar: Water and Agriculture

Water-ForCE Webinar: Water and Agriculture

During this webinar, we will be discussing water quality (run-off from agriculture, pollution of surface water for irrigation) and quantity of water (drought, extreme rainfall, groundwater level, soil moisture) to tackle the water and agriculture domains for the Copernicus Roadmap.

Speakers:

Event

Local Perspectives Case Studies

Stakeholder

Zimbabwe National Geospatial and Space Agency

The Zimbabwe National Geospatial and Space Agency (ZINGSA) is a wholly owned Government of Zimbabwe entity, established under the Research act [Chapter 10:20]. It is responsible for designing, promoting, coordinating and conducting research and development initiatives that promote advances in Geospatial Sciences and Earth Observations, Space Engineering, Space Science, Aeronautical Engineering, Mechatronics, Satellite Communication Systems, Global Navigation Satellite Systems (GNSS), Land Positioning Systems, Unmanned Aerial Vehicles (UAV) and Launch of Satellites.

Department of Geodesy and Geoinformation of the TU Wien

Geodesy and Geoinformation take on key roles in our modern society as provider of information about geographical locations, environmental processes, physical fundamentals and are pivotal in enabling access to social relevant spatial data. Since its early days in the 19th century, the TU Wien hosts scientists and engineers undertaking geospatial data research. Today, a multitude of research fields in the evolving domain of geodesy and geoinformation is in the scope of our academic institution.

Person