SDG 13 - Climate action

SDG 13

Take urgent action to combat climate change and its impacts

Climate change is now affecting every country on every continent. It is disrupting national economies and affecting lives, costing people, communities and countries dearly today and even more tomorrow. Weather patterns are changing, sea levels are rising, weather events are becoming more extreme and greenhouse gas emissions are now at their highest levels in history. Without action, the world’s average surface temperature is likely to surpass 3 degrees centigrade this century. The poorest and most vulnerable people are being affected the most.

Affordable, scalable solutions are now available to enable countries to leapfrog to cleaner, more resilient economies. The pace of change is quickening as more people are turning to renewable energy and a range of other measures that will reduce emissions and increase adaptation efforts. Climate change, however, is a global challenge that does not respect national borders. It is an issue that requires solutions that need to be coordinated at the international level to help developing countries move toward a low-carbon economy.

To strengthen the global response to the threat of climate change, countries adopted the Paris Agreement at the COP21 in Paris, which went into force in November of 2016. In the agreement, all countries agreed to work to limit global temperature rise to well below 2 degrees centigrade. As of April 2018, 175 parties had ratified the Paris Agreement and 10 developing countries had submitted their first iteration of their national adaptation plans for responding to climate change.

Climate Summit 2019

The Secretary-General will convene a Climate Summit in September 2019 to bring climate action to the top of the international agenda. Mr. Luis Alfonso de Alba, a former Mexican diplomat, will be his Special Envoy to lead its preparations.

The Summit will focus on the heart of the problem – the sectors that create the most emissions and the areas where building resilience could make the biggest difference – as well as provide leaders and partners the opportunity to demonstrate real climate action and showcase their ambition.

To read about the commitments that regions, cities, businesses, investors and civil society pledged during the Global Climate Action Summit in California, September 2018, click here.

Facts and Figures

  • As of April 2018, 175 parties had ratified the Paris Agreement and 168 parties had communicated their first nationally determined contributions to the UN framework convention on Climate Change Secretariat.
  • As of April 2018, 10 developing countries had successfully completed and submitted their first iteration of their national adaptation plans for responding to climate change.
  • Developed country parties continue to make progress towards the goal of jointly mobilizing $100 billion annually by 2020 for mitigation actions.

Thanks to the Intergovernmental Panel on Climate Change we know:

  • From 1880 to 2012, average global temperature increased by 0.85°C. To put this into perspective, for each 1 degree of temperature increase, grain yields decline by about 5 per cent. Maize, wheat and other major crops have experienced significant yield reductions at the global level of 40 megatons per year between 1981 and 2002 due to a warmer climate.
  • Oceans have warmed, the amounts of snow and ice have diminished and sea level has risen.From 1901 to 2010, the global average sea level rose by 19 cm as oceans expanded due to warming and ice melted. The Arctic’s sea ice extent has shrunk in every successive decade since 1979, with 1.07 million km² of ice loss every decade
  • Given current concentrations and on-going emissions of greenhouse gases, it is likely that by the end of this century, the increase in global temperature will exceed 1.5°C compared to 1850 to 1900 for all but one scenario. The world’s oceans will warm and ice melt will continue. Average sea level rise is predicted as 24 – 30cm by 2065 and 40-63cm by 2100. Most aspects of climate change will persist for many centuries even if emissions are stopped
  • Global emissions of carbon dioxide (CO2) have increased by almost 50 per cent since 1990
  • Emissions grew more quickly between 2000 and 2010 than in each of the three previous decades
  • It is still possible, using a wide array of technological measures and changes in behavior, to limit the increase in global mean temperature to two degrees Celsius above pre-industrial levels
  • Major institutional and technological change will give a better than even chance that global warming will not exceed this threshold

* Acknowledging that the United Nations Framework Convention on Climate Change is the primary international, intergovernmental forum for negotiating the global response to climate change.

Space-based Technologies for SDG 13

Climate-related hazards can damage societies and economies worldwide. Satellites help monitor climate variables such as greenhouse gases, sea-level and deforestation. UNOOSA strengthens resilience to climate-related hazards and natural disasters, including by increasing access to space-based information for all countries through UN-SPIDER. Read more here.
 

 

 

SDG 13 Targets

Learn more about the SDGs

Related Content

Article

Space technologies for drought monitoring and management

The impacts of climate change are ever more apparent. The frequency and scale of devastation and destruction of weather hazards are on an increasing trend. According to the latest Intergovernmental Panel on Climate Change Report (IPCC, 2021) climate change is intensifying the water cycle. This will cause more intense droughts in many regions. Moreover, water-related extremes impact the quality of life disproportionately strong. Drought accounts for 25% of all losses from weather-related disasters in the United States of America (Hayes et al., 2012).

Towards new applications of spaceborne technology on flood protection

Recently, in July 2021, destructive and deadly floods occurred in Western Europe. The estimated insured losses only in Germany could approach 5 billion Euros (AIR Worldwide, 2021). However, the total amount of the damage is currently not foreseeable due to the variety and complexity of the damage patterns and the unbelievable extent of the disaster. It seems the socio-economic losses will dramatically increase and break a new record in the insurance industry after evaluating the complete record of damages’ reports (see Figure 1).

Interview with Victor Pellet, CNES PostDoc, Paris Observatory

Describe experience relating to water and space technologies

I grew up in a country (France) where water is freely available. The drought in 2003 was considered a one-time event. I had no single lesson on climate change at school. Despite this background, I was raised aware of the links between social and environmental inequality on a global scale.

European Space Agency’s “Water Scarcity” Kick-Start

The challenge

Water is one of the most important substances on Earth and covers 70% of the planet. However, freshwater makes up a very small fraction with 97% being saline and ocean-based. While the amount of freshwater on the planet has remained fairly constant over time, the world’s population has exploded, meaning that freshwater is threatened by significant forces, like overdevelopment, polluted runoff, and global warming. 

Interview with Egline Tauya, Head of the Environment and Water Institute at SARDC

Egline Tauya has focussed her career on natural resource management, after growing up in a rural area and learning to value such resources from a young age. Her work has been based in Africa and has included the use space technologies to map flood risks and vulnerable areas around the Zambezi and Limpopo River basins. Egline develops Environmental Outlooks as part of her work, which are reports that provide an integrated assessment of the state and trends of key environmental resources, such as freshwater, forest, and wildlife. Egline strongly believes in the integration of indigenous knowledges into water resource management and the crucial, but currently limited use of remote sensing in groundwater monitoring.

Interview with Malek Abdulfailat

Malek Abdulfailat has over 10 years of experience mapping and coordinating water-related projects in Palestine, Israel, and Jordon. He is currently leading a new consultation firm working on three projects: Green businesses and Water, EcoTourism and Water, and Solid waste management through women leaders. He has experience using several different space based technologies including spatial analysis and water elevation mapping. He’s realises the importance of space based technologies and believes that one factor needed to unlock their true potential is by increasing access to such tools and by better communicating their potential to policy makers.

Interview with Mina Konaka, Satellite engineer at JAXA

Mina Konaka works at the Japan Aerospace Exploration Agency (JAXA) as a satellite engineer and is currently working on the satellite ALOS-4, which can detect changes in groundwater on land. She attended the International Space University, participating in the project AWARE (Adapting to Water and Air Realities on Earth), in which participants aimed to provide solutions for flood and air quality risks due to climate change, using earth observation data and ground-based sensors. Mina feels strongly about the need to talk more globally about water management solutions, rather than on an individual country basis. Mina also hopes that in the future there will be more female engineers who pursue dreams of space, and that gender balance is no longer an issue.

Interview with Sarhan Zerouali

Sarhan Zerouali became fascinated with water at a young age through learning about water scarcity around the world and about traditional methods for locating groundwater. In a space applications course Sahran then learnt about space-based technologies. He is currently working on a research project on how remote sensing and other technologies can help alleviate global challenges arising from land degradation. As an aerospace engineer, Sahran has worked with various modern technologies in his work including nanosatellites, artificial intelligence, and feature extraction algorithms.

Interview with Valdilene Silva Siqueira

Valdilene Siqueira has a diverse background in chemistry and environmental engineering and is currently pursing a master’s degree in Sustainable Territorial Development. Her work and experience has always been closely tied to water management and sanitation. She believes that access to water and ensuring the sustainable management of water resources in a fast-paced changing world are two of the most important challenges for the coming years. Valdilene feels that achieving mutual understanding on how to manage this resource, especially in water-scarce regions, is a real challenge for decision-makers but considers that an intersectoral, integrated and participatory approach is capable of bringing stakeholders together to reconcile their different interests and build collective solutions. 

Interview with Ruvimbo Samanga

Ruvimbo Samanga, despite her age, has vast experience in the law, space, and water sectors. She is presently involved in a regional study on the integration of GIS and statistical information in Zimbabwe, working towards the promulgation of GIS standards and legislation to support a National Spatial Data Infrastructure (NSDI). Ruvimbo is excited by the merging of sustainable development for water management with space technologies because it is scalable, environmentally friendly, and cost-effective over the long run. Ruvimbo feels strongly that space technologies have a role to play in policy and legal affairs, and also sees potential especially in the use of emerging technologies such as block chain, artificial intelligence (AI) and quantum computing.

Remote sensing in managing, maintaining, and understanding coral reef ecosystems

Coral reefs provide integral services to social, economic, and ecological systems. They support more than 500 million livelihoods worldwide and account for 15% of gross domestic product in more than 20 countries. A quarter of all marine species on planet Earth, representing 28 of the 35 animal phyla, can be found in coral reefs, and novel compounds derived from these organisms provide numerous useful medicinal applications.

Interview with Prof. Hesham El-Askary

Prof. Hesham El-Askary works at Chapman University in the Earth Systems Science Data Solutions (ESsDs) lab. Here, he supervises students on the use of satellite earth observations for topics including agriculture, water resources, air quality and climate action, and makes use of Artificial Intelligence (AI) and Machine Learning (ML). Prof. El-Askary is researching natural and anthropogenic pollution’s influence on the environment and is particularly interested in the concept of “glocal” impact—how what’s happening globally in terms of climate affects us locally. He believes that one of the biggest challenges in implementing sustainable water management is the lack of data to monitor progress, and advocates for space technologies to mitigates this shortage.  

Women, water and space: The first geospatial rally for women in rural aqueducts

Can you imagine a group of young women empowering other women using geospatial technology? From July 10 to 13 July 2019 in the First Geospatial Rally for Women in Rural Aqueducts took place, where 30 women from very different contexts met with the same goal, to build an empowering space, in the Nicoya Campus (north of Costa Rica) of the University of Costa Rica (UCR). This was done with the intention to learn from each other.

Interview with Marie-Françoise Voidrot, Europe Director of the Innovation Program at OGC

Marie-Francoise Voidrot studied meteorology and therefore knows the importance of satellite technology in predicting and monitoring weather patterns. She worked specifically on the integration of information needed by forecaster’s specialized decision tool using WMO standards for many years. Marie-Francoise is now the European Director of the innovation program at the Open Geospatial Consortium (OGC). She finds her work fascinating, as it is useful for the sustainability of humankind and for business development and any improvement is very quickly adopted and implemented.

Space-Based Radioglaciology: Refining Climate Models and Monitoring Ice

About 40% of the World’s population lives within 100 km of the coast (United Nations 2017).  Sea levels are on the rise around the World and the trend is accelerating every year. The UN, countless international organizations and national agencies are working hard every year to support the efforts of climate scientists to accurately model our changing climate. The role of ice in shaping the Earth’s seas is indisputable. As continental ice melts and as ice sheets break off from continental shelves and fall into the sea, more and more coastal communities are threatened.

Urban Water Scarcity: How data from NASA’s GRACE-FO Mission can be used for (near) real time water management

As population becomes larger the demand for water soars, including water needed for domestic, industrial and municipal uses (Mogelgaard 2011). One example of that, is India, where on 20 June 2019 the city of Chennai almost run out of water. Satellite images show the extent of the water shortage in the city (figure 1). While people are queuing up to get water from water trucks that transfer water to the city, the greatest struggle is taking place in the city’s municipal buildings and businesses. Hospitals are facing the threat of not having enough water to treat patients and to clean equipment, and businesses are forced to shut down and wait until the crisis is over.

The impact of space-based internet communications constellations on water

Imagine a world where your internet is delivered not through cables or cell towers but a vast swarm of orbiting satellites. That world is a very different place. Political borders are no longer communication boundaries. Your phone works just as well in the US as it does in Nigeria and Australia and Cambodia. You can communicate with people on the other side of the planet near the physical limits of information transmission, unconstrained by slow cable networks.

Leveraging space technologies to monitor plastic pollution in oceans

 

Several ongoing projects are trying to detect plastic pollution in oceans by using Space technology

The ocean is where life began. It is home to the majority of the Earth’s plants and animals. However, there is currently another habitant endangering all species living under and above water. Humans included. The habitant is called “Plastic”. Plastic’s largest market is packaging designed for immediate disposal (Sigogneau-Russell, 2003).

Event

Software/Tool/(Web-)App

ISME-HYDRO Software/Tool/(Web-)App

ISME-HYDRO

ISME-HYDRO is a platform that helps monitor water resources of dams, thus enabling water resources managers to better execute their duties. It employs linked data infrastructure integrating in-situ measurements, satellite data, GIS data, domain knowledge, deep learning, and provides capabilities of forecasting of water volumes, of alerting for hazardous situations, of interaction with the data through four kinds of search and GIS interactivity. The platform is easily extendable and customizable.

Aqua Monitor Software/Tool/(Web-)App

Aqua Monitor

Aqua Monitor shows how the Earth's surface water has changed during the last 30 years. It uses freely available satellite data and Google Earth Engine, a platform for the planetary-scale scientific analysis of geospatial datasets.

For more information check the following pages:

JAXA Climate Rainfall Watch Software/Tool/(Web-)App

JAXA Climate Rainfall Watch

A need to monitor precipitation extremes from space is widely recognized, especially for regions where ground-based observations are limited or unavailable. The Japan Aerospace Exploration Agency (JAXA) has developed the Global Satellite Mapping of Precipitation (GSMaP) in the Global Precipitation Measurement (GPM) mission. The JAXA participated in the Space-based Weather and Climate Extremes Monitoring (SWCEM) of the World Meteorological Organization (WMO) by providing the GSMaP Near-real-time Rainfall Product.

Capacity Building and Training Material

Geospatial Applications for Disaster Risk Management Capacity Building and Training Material

Geospatial Applications for Disaster Risk Management

Learning objectives

During the challenging times of the COVID-19 outbreak, MOOCs are an effective way of reaching a large number of participants to share knowledge. The United Nations Office for Outer Space Affairs and the Centre for Space Science and Technology Education for Asia and the Pacific (Affiliated to the United Nations) launched a Massive Open Online Course (MOOC) on “Geospatial Applications for Disaster Risk Management” on 13th October, 2020 the International Day for Disaster Risk Reduction.

ARSET - Remote Sensing of Drought Capacity Building and Training Material

ARSET - Remote Sensing of Drought

Overview:

Prolonged drought can result in economic, environmental, and health-related impacts. In these training webinars, participants will learn how to monitor drought conditions and assess impacts on the ecosystem using precipitation, soil moisture, and vegetation data. The training will provide an overview of drought classification, as well as an introduction to web-based tools for drought monitoring and visualization.

Objective:

By the end of the training, participants will be able to:

ARSET - Introduction to Using the Variable Infiltration Capacity (VIC)Hydrologic Model with NASA Earth Observations

Overview:

Hydrologic modeling is useful for flood, drought, and water resources management. The Variable Infiltration Capacity (VIC) Model uses inputs to better understand hydrological processes in near real-time. Many of the inputs are available from NASA remote sensing and Earth system models, allowing the model to provide soil moisture, evapotranspiration, and runoff as outputs. Together with precipitation data, these outputs provide quantitative assessment of a regional water budget.

UN SPIDER Recommended Practice: Use of Digital Elevation Data for Storm Surge Coastal Flood Modelling

Overview:

Storm surges and tidal waves are global phenomena that considerably affect human populations in coastal and island regions. According to the Guide to Storm Surge Forecasting published by the World Meteorological Organization in 2011, storm surges can be defined as “oscillations of the water level in a coastal or inland body of water in the time range of a few minutes to a few days, resulting from forcing from atmospheric weather systems. According to this definition, the so-called wind waves, which have durations on the order of several seconds, are excluded”.

UN SPIDER Recommended Best Practice: Flood Hazard Assessment Capacity Building and Training Material

UN SPIDER Recommended Best Practice: Flood Hazard Assessment

Overview:

Flood hazard assessments are critical to identifying areas at risk and taking relevant preparation and mitigation measures to address the hazard. Using the HEC-RAS 2D model for preparing flood hazard maps, this Recommended Practice explains how to identify flood-prone areas and exposed infrastructure. Through its focus on the prevention and mitigation stages of the disaster management cycle, it complements the Recommended Practice on Flood Mapping and Damage Assessment with Sentinel-2, also developed by SUPARCO.

UN SPIDER Recommended Best Practice: Exposure Mapping Capacity Building and Training Material

UN SPIDER Recommended Best Practice: Exposure Mapping

Overview:

Mapping the extent of a natural hazard (e.g., assessing areas with a high risk) or disaster is a first step in disaster risk management and emergency response. Subsequently, exposure mapping enables the estimation of the impact of hazards or disasters, for example, regarding the number of affected inhabitants or infrastructure. The following practice shows the use of Quantum GIS to analyze a disaster extent map in combination with auxiliary data such as population or land cover data.

UN-SPIDER Best Practice: Disaster Preparedness Using Free Software Extensions

Overview:

Remote sensing technologies can support all stages of the disaster management cycle. In the prevention and preparedness phases, they often find their application in risk assessments, scenario modelling and early warning. This UN-SPIDER Recommended Practice explains how remote sensing data about recurring floods, information about infrastructure and socio-economic data can be integrated using free and open source software to support prevention and preparedness efforts.

Webinar: Linking Global Water Security to Nature Capacity Building and Training Material

Webinar: Linking Global Water Security to Nature

Due to climate change, population growth, increasing urbanization etc., many lakes, rivers, wetlands and coastal basins globally are becoming more stressed from pollution, depleting water resources, global warming, increased floods and droughts, and increasing ecological and biological disruptions.

Afri Alliance Knowledge Hub Capacity Building and Training Material

Afri Alliance Knowledge Hub

The AfriAlliance project aims to better prepare Africa for future climate change challenges by having African and European stakeholders work together in the areas of water innovation, research, policy, and capacity development. Rather than creating new networks, the 16 EU and African partners in this project are consolidating existing ones, consisting of scientists, decision makers, practitioners, citizens, and other key stakeholders, into an effective, problem-focused knowledge sharing mechanism.

Publication

Project / Mission / Initiative / Community Portal

Africa-EU Innovation Alliance for Water and Climate Project / Mission / Initiative / Community Portal

Africa-EU Innovation Alliance for Water and Climate

The AfriAlliance project aims to better prepare Africa for future climate change challenges by having African and European stakeholders work together in the areas of water innovation, research, policy, and capacity development. Rather than creating new networks, the 16 EU and African partners in this project are consolidating existing ones, consisting of scientists, decision makers, practitioners, citizens, and other key stakeholders, into an effective, problem-focused knowledge sharing mechanism.

e-shape Project / Mission / Initiative / Community Portal

e-shape

e-shape is a unique initiative that brings together decades of public investment in Earth Observation and in cloud capabilities into services for the decision-makers, the citizens, the industry and the researchers. It allows Europe to position itself as global force in Earth observation through leveraging Copernicus, making use of existing European capacities and improving user uptake of the data from GEO assets.  EuroGEO, as Europe's contribution to the Global Earth Observation System of Systems (GEOSS), aims at bringing together Earth Observation resources in Europe.

In-Service ICT Training for Environmental Professionals Project / Mission / Initiative / Community Portal

In-Service ICT Training for Environmental Professionals

Decision-makers are faced with the constant challenge of maintaining access to and understanding new technologies and data, as information and communication technologies (ICTs) are constantly evolving and as more and more data is becoming available. Despite continually improving technologies, informed decision-making is being hindered by inadequate attention to enabling conditions, e.g. a lack of in-service education and professional training for decision-makers.