Imaging microwave radars

"An imaging radar works very like a flash camera in that it provides its own light to illuminate an area on the ground and take a snapshot picture, but at radio wavelengths. A flash camera sends out a pulse of light (the flash) and records on film the light that is reflected back at it through the camera lens. Instead of a camera lens and film, a radar uses an antenna and digital computer tapes to record its images. In a radar image, one can see only the light that was reflected back towards the radar antenna.

A typical radar (RAdio Detection and Ranging) measures the strength and round-trip time of the microwave signals that are emitted by a radar antenna and reflected off a distant surface or object. The radar antenna alternately transmits and receives pulses at particular microwave wavelengths (in the range 1 cm to 1 m, which corresponds to a frequency range of about 300 MHz to 30 GHz) and polarizations (waves polarized in a single vertical or horizontal plane). For an imaging radar system, about 1500 high- power pulses per second are transmitted toward the target or imaging area, with each pulse having a pulse duration (pulse width) of typically 10-50 microseconds (us). The pulse normally covers a small band of frequencies, centered on the frequency selected for the radar. Typical bandwidths for an imaging radar are in the range 10 to 200 MHz. At the Earth's surface, the energy in the radar pulse is scattered in all directions, with some reflected back toward the antenna. Thisbackscatter returns to the radar as a weaker radar echo and is received by the antenna in a specific polarization (horizontal or vertical, not necessarily the same as the transmitted pulse). These echoes are converted to digital data and passed to a data recorder for later processing and display as an image. Given that the radar pulse travels at the speed of light, it is relatively straightforward to use the measured time for the roundtrip of a particular pulse to calculate the distance or range to the reflecting object. The chosen pulse bandwidth determines the resolution in the range (cross-track) direction. Higher bandwidth means finer resolution in this dimension." (Freeman n.d.)
 

Sources

Freeman, Tony. n.d. “What Is Imaging Radar?” Jet Propulsion Laboratory. Accessed April 14, 2021. https://airsar.jpl.nasa.gov/documents/genairsar/radar.html.