A new water-treatment technology used by astronauts aboard the International Space Station has the potential to provide clean water to millions of people worldwide. By using proteins called aquaporins, this system mimics the natural filtering abilities of human kidneys and plant roots to purify and recycle wastewater. With an increasing global water demand especially in remote locations where clean drinking water is not easily accessible, this technology has the potential to provide a more resource-efficient method of water purification not only in space, but here on Earth as well.
As population becomes larger the demand for water soars, including water needed for domestic, industrial and municipal uses (Mogelgaard 2011). One example of that, is India, where on 20 June 2019 the city of Chennai almost run out of water. Satellite images show the extent of the water shortage in the city (figure 1). While people are queuing up to get water from water trucks that transfer water to the city, the greatest struggle is taking place in the city’s municipal buildings and businesses. Hospitals are facing the threat of not having enough water to treat patients and to clean equipment, and businesses are forced to shut down and wait until the crisis is over.