Water quality

"Total mass of living matter in a given body of water." (United Nations Publication, 2013)

Sources

United Nations Publications. "Glossary of Shared Water Resources (English-Arabic): Technical, Socioeconomic and Legal Terminology." (2013). DOI:https://dx.doi.org/10.18356/70b462ce-en

Related Content

Article

Interview with Terefe Hanchiso Sodango, Assistant Professor at Wolkite University

Water scarcity and quality decline is a rapidly increasing challenges and becoming a top concern globally. To wisely manage water and achieve sustainable development, rapid and precise monitoring of water resources is crucial. Earth observation (EO) technologies play a key role in monitoring surface and underground water resources by providing rapid, continuous, high-quality, and low-cost EO data, products, and services. Currently, there are promising efforts in the use of EO technologies for water resource management but there are still huge gaps in the Africa region. The reason for the low utilization of EO technologies can be due to a lack of resources and funding including skilled and motivated human resources in the field and the lack of political commitment to foster EO products, data, and services. Therefore, the use of space technologies and their products to solve water-related problems needs collaborative efforts of all concerned stakeholders from global to local levels.

Interview with Sawaid Abbas, Assistant Professor at the Centre for Geographical Information, University of the Punjab, Lahore, Pakistan

Sawaid Abbas, Assistant Professor at the Centre for Geographical Information System, University of the Punjab, Lahore, Pakistan discussed his extensive work in addressing water-related challenges through the nexus between smart sensing and space technologies. His thematic focus spans water scarcity, food security, climate risks, and environmental monitoring with an emphasis on the Asia-Pacific region, including Pakistan and China. Key Sustainable Development Goals (SDGs) guiding his work include SDG2 (Zero Hunger), SDG13 (Climate Action), SDG15 (Life on Land), and SDG11 (Sustainable Cities and Communities).  Abbas's passion for water emerged during his early career at the World Wide Fund for Nature (WWF), where he was involved in Pakistan’s Wetland Program and witnessed the impact of water on associated ecosystems. This sparked his interest in understanding and managing water, forestry, and wildlife resources. He recently studied coastal ecosystems and their responses to climate and anthropogenic stressors in the Asia-Pacific region. The Living Indus – Investing in Ecological Restoration has become a new focus of interest for him, addressing sustainability challenges related to food security, river basin management, and efficient water use in alignment with the UN Decade of Ocean objectives.  Abbas shared his fascination with water, recognizing its complex and essential nature. He is captivated by its beauty in all forms and acknowledges its fundamental importance for life on Earth. This water connection further motivates his commitment to addressing global water challenges and promoting sustainable water use through innovative solutions.  Sawaid Abbas's work, stimulated by both professional commitment and personal fascination, stresses the critical role of space technologies, particularly earth observation, smart sensing nexus, and artificial intelligence in addressing water-related challenges. His research contributes to the development of innovative solutions for sustainable water use, environmental protection, and disaster response, aligning with global goals for a more resilient and water-secure future. 

Technologies Spin-off pour l’Eau

Avez-vous déjà pensé comment les technologies innovantes utilisées dans l’industrie spatiale peuvent nous profiter sur Terre ? Vous pourriez être surpris d’apprendre que les applications non-spatiales des programmes spatiaux sont extensibles.

Exploring the exciting potential of hyperspectral imaging for water quality monitoring

Harmful Algal Blooms occur when toxin-producing algae experience excessive growth within bodies of water. These blooms have the potential to cause detrimental effects on both aquatic and human health and can sometimes even cause death, depending on the type of algae involved (NIEHS, 2021). Thanks to the use of space-based remote sensing technology to monitor water quality conditions in coastal areas and drinking water reservoirs, nations are becoming more aware of the quality of their water.

United Nations/Ghana/PSIPW - 5th International conference on the use of space technology for water resources management

From 10 to 13 May 2022, the United Nations Officer for Outer Space Affairs organized the 5th International conference on the use of space technology for water resources management. The conference was hosted in a hybrid format in Accra, Ghana, by the University of Energy and Natural Resources, Sunyani on behalf of the Government of Ghana. The event was attended by several senior government representatives of the host country including Dr. Mahamudu Bawumia, Vice President of the Republic of Ghana, the Honorary Minister of Education Dr.

Acuaporinas: la lucha contra la crisis mundial del agua utilizando el propio filtro de la naturaleza

A new water-treatment technology used by astronauts aboard the International Space Station has the potential to provide clean water to millions of people worldwide. By using proteins called aquaporins, this system mimics the natural filtering abilities of human kidneys and plant roots to purify and recycle wastewater. With an increasing global water demand especially in remote locations where clean drinking water is not easily accessible, this technology has the potential to provide a more resource-efficient method of water purification not only in space, but here on Earth as well.

Water Quality Indicators – an Overview

Clean drinking water is a precious resource. It is the basis of our daily life and decides like no other substance about our health and well-being. It is therefore important to ensure that the water for everyday use meets the highest quality criteria. But what is meant by the term water quality and how can water quality be measured and compared? This question will be addressed and explained in more detail in the following sections.

The progress and potential of Sustainable Development Goal 6 and how Space Technologies contribute

Transitioning from the Millennium Development Goals (MDGs) to the Sustainable Development Goals (SDGs)

The world of WASH (water, sanitation, and hygiene) has come a long way in 30 years. Between 1990 and 2015, 2.6 billion people gained access to improved drinking water, whilst 2.1 billion gained access to improved sanitation (Unicef and World Health Organisation 2015). That’s a lot of people. But is it enough? 

Aquaporine: Combattre la Crise Globale d'Eau en Utilisant le Filtre de la Nature

Une nouvelle technologie de traitement de l'eau utilisée par les astronautes à bord de la Station spatiale internationale pourrait fournir de l'eau propre à des millions de personnes dans le monde. En utilisant des protéines appelées aquaporines, ce système imite les capacités naturelles de filtration des reins humains et des racines des plantes pour purifier et recycler les eaux usées. Face à la demande mondiale croissante en eau, en particulier dans les régions reculées où l'eau potable n'est pas facilement accessible, cette technologie pourrait constituer une méthode de purification de l'eau plus économe en ressources, non seulement dans l'espace, mais aussi sur Terre.

Progrès et Potentiel de l'Objectif de Développement Durable 6 et Contribution des Technologies Spatiales

Transition des Objectifs du Millénaire pour le Développement (OMD) aux Objectifs de Développement Durable (ODD) 

Le monde de l'eau, de l'assainissement et de l'hygiène (WASH) a parcouru un long chemin en 30 ans. Entre 1990 et 2015, 2,6 milliards de personnes ont pu observer une amélioration de l’accès à l'eau potable, et 2,1 milliards ont eu une amélioration des services d’assainissement (Unicef et Organisation mondiale de la santé 2015). Cela fait beaucoup de monde. Mais est-ce suffisant ?  

Crowdsourcing and Citizen Science data for water resources management

The provision of water resources is one of the most fundamental ecosystem services . An acute scarcity of water data in both, the spatial and temporal domains in many regions prompts the urgency to assess risks related to water such as water quality decline, floods and droughts. Remote sensing does provide us with relevant data for water resources monitoring, but this data still needs to be validated with in-situ observations and measurements.

Indicateurs de la Qualité de l'Eau - Vue d'ensemble

Merci à Denis Gringas d'avoir traduit cet article volontairement.

L'eau potable est une ressource précieuse. Elle est à la base de notre vie quotidienne et décide comme aucune autre substance de notre santé et de notre bien-être. Il est donc important de s'assurer que l'eau d'usage quotidien réponde aux critères de qualité les plus élevés. Mais que signifie le terme qualité de l'eau et comment peut-on mesurer et comparer la qualité de l'eau? Cette question sera abordée et expliquée plus en détail dans les sections suivantes.

Can space technologies help improve WASH provision in camps and informal settlements?

The Human Right to water and sanitation

What does your morning routine look like? For most readers I’d assume you use the toilet, wash your hands, and maybe take a shower.  However, do you ever stop to consider the water you use to shower, or the soap you use to wash your hands? Often, especially in developed countries, these things are taken for granted, rightly considering access to adequate water, sanitation, and hygiene (WASH) as basic Human Rights (Figure 1).

Spin-off technologies for water

Have you ever considered how technological innovations from the space industry can benefit us here on Earth? You might be surprised to hear that non-space applications from space programmes are extensive.

From Jakarta to Nusantara: Land subsidence and other pressing water challenges in a sinking mega city

Jakarta, “the sinking city”, is the current capital city of Indonesia. Located on the Java Sea, this coastal city is home to nearly 30 million people within the greater-Jakarta area. Jakarta has grappled with water management issues for decades, leading to several current day water-related crises. Access to a reliable, potable water supply is extremely limited as there is a significant disparity between those with piped water access and those without. Citizens without piped water access have consequently relied heavily on groundwater and have dug thousands of unregulated wells as a result. This has led to a second water crisis – the chronic overextraction of Jakarta’s underground aquifers. Land subsidence is of the utmost concern as this sinking city is placed at high flood risk from the surrounding ocean. Approximately 40% of Jakarta now lies below sea level as a result and predictive models suggest that the entire city will be underwater by 2050 (Gilmartin, 2019). Compounding these problems, the climate crisis has led to significant sea level rise as glaciers and ice caps continue to melt (Intergovernmental Panel on Climate Change, 2019; Lindsey, 2022). As the city of Jakarta continues to sink and sea levels rise, millions of citizens within Jakarta are at extremely high risk of flooding, particularly during monsoon season. Thousands of residents have already been forced to abandon their homes in search of improved conditions and higher ground (Garschagen et al., 2018).

Aquaporins: Fighting the global water crisis using nature’s own filter

A new water-treatment technology used by astronauts aboard the International Space Station has the potential to provide clean water to millions of people worldwide. By using proteins called aquaporins, this system mimics the natural filtering abilities of human kidneys and plant roots to purify and recycle wastewater. With an increasing global water demand especially in remote locations where clean drinking water is not easily accessible, this technology has the potential to provide a more resource-efficient method of water purification not only in space, but here on Earth as well.

Est ce que les Technologies Spatiales Peuvent Améliorer les Provisions WASH dans les Camps et Quartiers Informels

Le droit humain à l'eau et à l'assainissement 

À quoi ressemble votre routine matinale ? Pour la plupart des lecteurs, je suppose que vous utilisez les toilettes, vous vous lavez les mains et peut-être que vous prenez une douche. Cependant, vous arrive-t-il de vous arrêter pour réfléchir à l'eau que vous utilisez sous la douche ou au savon que vous utilisez pour vous laver les mains ?

Interview with Yolanda Lopez-Maldonado

Name of the community

Maya

Short description of community and hydrogeology of the area

Yucatan is located in the southeast portion of Mexico. The total area of Yucatan is 124, 409 km2 and the population (by 2018) was ca. 2.1 million inhabitants. The landscape of the area is defined by a highly permeable karstic soil, a notable absence of rivers or permanent freshwater resources in the surface, and a high number of natural wells or sinkholes (locally called cenotes, from the Maya word t´sonot).  

Interview with Sawaid Abbas, Assistant Professor at the Centre for Geographical Information, University of the Punjab, Lahore, Pakistan

Sawaid Abbas, Assistant Professor at the Centre for Geographical Information System, University of the Punjab, Lahore, Pakistan discussed his extensive work in addressing water-related challenges through the nexus between smart sensing and space technologies. His thematic focus spans water scarcity, food security, climate risks, and environmental monitoring with an emphasis on the Asia-Pacific region, including Pakistan and China. Key Sustainable Development Goals (SDGs) guiding his work include SDG2 (Zero Hunger), SDG13 (Climate Action), SDG15 (Life on Land), and SDG11 (Sustainable Cities and Communities).  Abbas's passion for water emerged during his early career at the World Wide Fund for Nature (WWF), where he was involved in Pakistan’s Wetland Program and witnessed the impact of water on associated ecosystems. This sparked his interest in understanding and managing water, forestry, and wildlife resources. He recently studied coastal ecosystems and their responses to climate and anthropogenic stressors in the Asia-Pacific region. The Living Indus – Investing in Ecological Restoration has become a new focus of interest for him, addressing sustainability challenges related to food security, river basin management, and efficient water use in alignment with the UN Decade of Ocean objectives.  Abbas shared his fascination with water, recognizing its complex and essential nature. He is captivated by its beauty in all forms and acknowledges its fundamental importance for life on Earth. This water connection further motivates his commitment to addressing global water challenges and promoting sustainable water use through innovative solutions.  Sawaid Abbas's work, stimulated by both professional commitment and personal fascination, stresses the critical role of space technologies, particularly earth observation, smart sensing nexus, and artificial intelligence in addressing water-related challenges. His research contributes to the development of innovative solutions for sustainable water use, environmental protection, and disaster response, aligning with global goals for a more resilient and water-secure future. 

Interview with Nokubonga Mazibuko, Commissioner at the Commission on Khoi-San Matters, South Africa

Disclaimer!

I should note that this interview does not aim to compare the San women of Platfontein with the Zulu women from Folweni as these are totally different communities. Also, as much as I am a Commissioner, this interview is not done on behalf of the Commission on Khoi-San Matters (CKSM) but on my personal capacity as a researcher and academic who has an interest on issues pertaining to women.

Interview with Lilian Nguracha Balanga, Founder of Women.conserve

Short description of the Samburu community

The Samburu community is the Nilotic ethnic community of North Central Kenya. They dress in red shukas and adorn themselves with necklaces, bracelets and anklets mostly from beads. They believe in God Nkai, living in the mountains. They are nomadic are pastoralists, meaning that they keep animals (e.g., cows, goats, sheep and camel) which is their main source of livelihood as they get milk, meat and blood for self consumption and/or to be sold. They move from place to place in search of pasture and water.

Interview with Shaima Almeer, Senior Space Data Analyst at Bahrain National Space Science Agency

Shaima Almeer is a young Bahraini lady that works as a senior space data analyst at the National Space Science Agency. At NSSA she is responsible for acquiring data from satellite images and analyzing them into meaningful information aiming to serve more than 21 governmental entities. Shaima is also committed to publishing scientific research papers, aiming to support and spread the knowledge to others. In addition, she has recently graduated from a fellowship program at Bahrain’s Prime Minister’s Office. Shaima was selected among more than 1000 individuals to spend a year working as full-time research fellow, benefiting from advanced training in writing skills, research methods and policy analysis. The fellowship forms a core pillar of HRH the CP and PM initiative to improve national skills and support the Kingdom’s growing cadre of young government professionals. Part of the fellowship program is to work as a supervisor at the COVID-19 War Room. Shaima has obtained her bachelor’s degree in the field of Information and Communication Technology from Bahrain Polytechnic and is currently pursuing her Msc. degree in Management Information System from the University College of Bahrain. Prior to obtaining her bachelor’s degree, Shaima was titled as the first robotics programmer in the Kingdom of Bahrain and also won the title “Pioneering Women in Technology”. She has recently also won the “Women Innovator of the Year 2023 Award” in New Dehli.

Interview with Hannah Ritchie, PhD student in WASH at Cranfield University

Hannah has always had a love for the outdoors and especially for being by the sea. From her interest in both hydrogeology and development, developed during her undergraduate studies in geology and her travels respectively, she is now undertaking a PhD in WASH, researching water security in rural communities in Kenya. Hannah undertook a six-month internship with Space4Water at UNOOSA in 2021, where she developed her understanding of the importance and application of space-based technologies in the water sector. She believes that groundwater and sanitation are two areas where space technologies are currently under-exploited but in which they hold a lot of potential.

Interview with Alicia Simón Sisimit, Kaqchikel Journalist and activist at DDASO Project

Short description of the Kaqchikel community

The municipality of San José Poaquil was founded on November 1, 1891. It is located in the department of Chimaltenango with a territorial extension of approximately 100 km² and has almost 30 000 inhabitants. It is one of the 16 municipalities that make up the department of Chimaltenango. It is located in the west of the Republic of Guatemala at a distance of 101 kilometers from the Capital City and distance 47 kilometers from the Departmental Capital.

Interview with Nuredin Teshome Abegaz, Senior Lecturer and PhD candidate at Wollo University

Nuredin Teshome received the Bachelor of Science degree in Physics from Dire Dawa University and the Master of Science degree in Computational Physics from Haramaya University. In support of his bachelor, master studies and his enrolment for PhD studies he received fellowships to carry out research at Botswana International University of Science and Technology (2022-2023). In addition, he also received ‘Advanced Diploma in Data Science with R’, ‘Diploma in Environmental Management’ and ‘Diploma in Environmental Quality Monitoring and Analysis’ from Alison online training platform. From 2016 to 2019 he served as a lecturer and head of the Department of physics at Jigjiga University and he also serves as a lecturer at Wollo University starting from mid-2019. Currently, he is a PhD student at Addis Ababa University (Space Science and Geospatial Institute) in Space and Planetary Science Department.

Interview with Terefe Hanchiso Sodango, Assistant Professor at Wolkite University

Water scarcity and quality decline is a rapidly increasing challenges and becoming a top concern globally. To wisely manage water and achieve sustainable development, rapid and precise monitoring of water resources is crucial. Earth observation (EO) technologies play a key role in monitoring surface and underground water resources by providing rapid, continuous, high-quality, and low-cost EO data, products, and services. Currently, there are promising efforts in the use of EO technologies for water resource management but there are still huge gaps in the Africa region. The reason for the low utilization of EO technologies can be due to a lack of resources and funding including skilled and motivated human resources in the field and the lack of political commitment to foster EO products, data, and services. Therefore, the use of space technologies and their products to solve water-related problems needs collaborative efforts of all concerned stakeholders from global to local levels.

Call for local perspectives: Groundwater challenges

Local perspectives and case studies

The aim of the local perspectives and case studies feature is to learn about gaps in water resource management from affected individuals, communities, civil society, professionals, researchers or organisations in the field to identify needs or potential solutions that space technologies could contribute to.

Workshop on Water Quality Monitoring & Assessment

The Innovation Workshop on Water Quality Monitoring & Assessment, organized by World Meteorological Organization (WMO), United Nations Environment Programme (UNEP), United Nations Educational, Scientific and Cultural Organization (UNESCO) and World Water Quality Alliance (WWQA), co-organized with and supported by the European Commission’s Joint Research Centre (JRC) and in partnership with the International Atomic Energy Agency (IAEA) and the United Nations Institute for Training and Research (UNITAR), will take place from 27 to 29 September 2023 at the JRC in Petten, Netherlands.

Interview with Shaima Almeer, Senior Space Data Analyst at Bahrain National Space Science Agency

Shaima Almeer is a young Bahraini lady that works as a senior space data analyst at the National Space Science Agency. At NSSA she is responsible for acquiring data from satellite images and analyzing them into meaningful information aiming to serve more than 21 governmental entities. Shaima is also committed to publishing scientific research papers, aiming to support and spread the knowledge to others. In addition, she has recently graduated from a fellowship program at Bahrain’s Prime Minister’s Office. Shaima was selected among more than 1000 individuals to spend a year working as full-time research fellow, benefiting from advanced training in writing skills, research methods and policy analysis. The fellowship forms a core pillar of HRH the CP and PM initiative to improve national skills and support the Kingdom’s growing cadre of young government professionals. Part of the fellowship program is to work as a supervisor at the COVID-19 War Room. Shaima has obtained her bachelor’s degree in the field of Information and Communication Technology from Bahrain Polytechnic and is currently pursuing her Msc. degree in Management Information System from the University College of Bahrain. Prior to obtaining her bachelor’s degree, Shaima was titled as the first robotics programmer in the Kingdom of Bahrain and also won the title “Pioneering Women in Technology”. She has recently also won the “Women Innovator of the Year 2023 Award” in New Dehli.

Interview with Hannah Ritchie, PhD student in WASH at Cranfield University

Hannah has always had a love for the outdoors and especially for being by the sea. From her interest in both hydrogeology and development, developed during her undergraduate studies in geology and her travels respectively, she is now undertaking a PhD in WASH, researching water security in rural communities in Kenya. Hannah undertook a six-month internship with Space4Water at UNOOSA in 2021, where she developed her understanding of the importance and application of space-based technologies in the water sector. She believes that groundwater and sanitation are two areas where space technologies are currently under-exploited but in which they hold a lot of potential.

Interview with Nuredin Teshome Abegaz, Senior Lecturer and PhD candidate at Wollo University

Nuredin Teshome received the Bachelor of Science degree in Physics from Dire Dawa University and the Master of Science degree in Computational Physics from Haramaya University. In support of his bachelor, master studies and his enrolment for PhD studies he received fellowships to carry out research at Botswana International University of Science and Technology (2022-2023). In addition, he also received ‘Advanced Diploma in Data Science with R’, ‘Diploma in Environmental Management’ and ‘Diploma in Environmental Quality Monitoring and Analysis’ from Alison online training platform. From 2016 to 2019 he served as a lecturer and head of the Department of physics at Jigjiga University and he also serves as a lecturer at Wollo University starting from mid-2019. Currently, he is a PhD student at Addis Ababa University (Space Science and Geospatial Institute) in Space and Planetary Science Department.

Launch of Zimbabwe's first Satellite ZIMSAT - 1

What began as the development of a cubesat (BIRD-5) at the Kyushu Institute of Technology in Japan took off on a spacecraft to the International Space Station from the Mid-Atlantic Regional Spaceport at the National Aeronautics and Space Administration's (NASA's) Wallops Flight Facility in Virginia, US on 6 November 2022 (watch the video of the launch of the CRS2 NG-18 (Cygnus) Mission (Antares), in the video below the article).

Call for local perspectives: Groundwater challenges

Local perspectives and case studies

The aim of the local perspectives and case studies feature is to learn about gaps in water resource management from affected individuals, communities, civil society, professionals, researchers or organisations in the field to identify needs or potential solutions that space technologies could contribute to.

Interview with Lilian Nguracha Balanga, Founder of Women.conserve

Short description of the Samburu community

The Samburu community is the Nilotic ethnic community of North Central Kenya. They dress in red shukas and adorn themselves with necklaces, bracelets and anklets mostly from beads. They believe in God Nkai, living in the mountains. They are nomadic are pastoralists, meaning that they keep animals (e.g., cows, goats, sheep and camel) which is their main source of livelihood as they get milk, meat and blood for self consumption and/or to be sold. They move from place to place in search of pasture and water.

Interview with Alicia Simón Sisimit, Kaqchikel Journalist and activist at DDASO Project

Short description of the Kaqchikel community

The municipality of San José Poaquil was founded on November 1, 1891. It is located in the department of Chimaltenango with a territorial extension of approximately 100 km² and has almost 30 000 inhabitants. It is one of the 16 municipalities that make up the department of Chimaltenango. It is located in the west of the Republic of Guatemala at a distance of 101 kilometers from the Capital City and distance 47 kilometers from the Departmental Capital.

Interview with Yolanda Lopez-Maldonado

Name of the community

Maya

Short description of community and hydrogeology of the area

Yucatan is located in the southeast portion of Mexico. The total area of Yucatan is 124, 409 km2 and the population (by 2018) was ca. 2.1 million inhabitants. The landscape of the area is defined by a highly permeable karstic soil, a notable absence of rivers or permanent freshwater resources in the surface, and a high number of natural wells or sinkholes (locally called cenotes, from the Maya word t´sonot).  

Interview with Nokubonga Mazibuko, Commissioner at the Commission on Khoi-San Matters, South Africa

Disclaimer!

I should note that this interview does not aim to compare the San women of Platfontein with the Zulu women from Folweni as these are totally different communities. Also, as much as I am a Commissioner, this interview is not done on behalf of the Commission on Khoi-San Matters (CKSM) but on my personal capacity as a researcher and academic who has an interest on issues pertaining to women.

Capacity Building and Training Material

ARSET - Processing Satellite Imagery for Monitoring Water Quality

Overview:

Polluted water influences all aspects of life, including people, animals, and the environment. NASA satellite observations provide near real-time information about water quality. This freely available data can help decision-makers in their work. Satellite data can have applications for managing drinking water, public health, and fisheries.

Water Quality Assessment

Module

This module consists of four Courses with mainly theoretical background and one Course with a final assignment. Following the DPSIR structure (Driving forces, Pressures, State, Impact and Response), we will look first at some causes and consequences of water pollution and then learn how to measure and evaluate water pollution.

ARSET - Integrating Remote Sensing into a Water Quality Monitoring Program

Overview:

These training webinars will focus on integrating NASA Earth observations into water quality monitoring decision making processes. This will include a brief overview of data products used for water quality monitoring, an overview of aquatic remote sensing-specific criteria, methods and best practices, obtaining NASA Earth observation data for water quality monitoring, and practical skill building in image processing for water quality monitoring of coastal and larger inland water bodies. 

In situ calibration and validation of satellite products of water quality and hydrology

Water-ForCE is organising a community virtual workshop of experts in calibration and validation of Remote Sensing Products. This workshop is invitation-only and requires registration. The precise timing of the session slots (2-3 hours each) will be communicated once we have filled all programme slots. Each session will nevertheless take place in the early afternoon (no earlier than 1pm Central European Time) to allow speakers across the globe to join.

Land cover products for understanding water quality impacts

Description

Communities need to understand how land cover affects water quality. This webinar provides information about NOAA’s coastal land cover data (also known as “C-CAP data”). Several tools make these data easier to use, including the Land Cover Atlas, an online viewer used to analyze land cover changes by county or watershed. Also covered: a step-by-step guidance document that helps users understand key water quality indicators.

Water-ForCE Webinar: Water and Agriculture

Water-ForCE Webinar: Water and Agriculture

During this webinar, we will be discussing water quality (run-off from agriculture, pollution of surface water for irrigation) and quantity of water (drought, extreme rainfall, groundwater level, soil moisture) to tackle the water and agriculture domains for the Copernicus Roadmap.

Speakers:

Event

Local Perspectives Case Studies

Women and their everyday lives related to Water: Joy Marie Lawrence from Cape Town

Dry soil
The City of Cape Town is a coastal city that was facing severe water shortages. In Cape Town,  water is sourced from the surrounding dams which collect the rain fall water from the mountains. Water is pumped via a distribution network to households and businesses. In 2018 and 2019 water supply was severely disrupted due to limited rain fall during the winter rainfall season. The dams were running dry and there was a concerted effort from the local government and national government about the water shortages in Cape Town and some parts of the country. As a consequence, water distribution was severely reduced to prevent the dams from running dry - which at a particular point the dams were as low as 10 per cent of capacity. Water users (residents, businesses, and industries) were urged to use water efficiently and avoid overconsumption; if not, there were penalties introduced for overuse. The citizens were subjected to water cuts and had to resort to bottled water or collect water from the tankers for drinking. Greywater use was encouraged for irrigating food and non-food gardens, flushing toilets, cleaning vehicles etc. Water use for recreational purposes was banned and alternative supplies of water were transported via tankers to Cape Town. The City also tried a temporary de-salination plant at huge costs as a means of getting drinkable water to citizens. After a good raining winter season in 2020, the dams are moderately full again but the risk of another drought is ever present. There are surrounding aquifers however the quality of the water has not been fully assessed, more technical data will assist in this regard.

Need for water quality data to monitor effects of mining and industrial use of water near Lake Athabasca, Canada

Tar Sands - Photo by Garth Lenz
The community is nestled on the northwest shore of Lake Athabasca and downstream of tar sands/mining extraction and hydroelectric dams. The challenge the community faces is the lack of data on the industry water use and how that is or will affect the community in the future. There is a need for data that will help with informed decision making for active stewardship and monitoring. We have estimated that it will cost about 17 billion dollars in liability if reclamation and remediation is not done to bring back the boreal ecosystem. Therefore, we need data to aid in decision-making and adaptive management to determine whether the current management practices and solutions are effectively working. This could be data on biodiversity, for example of benthic vertebrates to access the health of the water ecosystems and also water quality. Currently we do not have such data. Right now, they are doing progressive reclamation where they are revegetating as they are mining but we cannot evaluate whether this is successful or not. We do not know if the species they are using for revegetation are improving environmental quality or not. We need to develop criteria to determine the success of reclamation by evaluating if specified targets are met with a particular time period and if these are not met then identify what could be done differently – adaptative management.

Decline in Groundwater levels and quality

Photo of a cenote in Merida Yucatan, CC license
Decline in groundwater quality is the challenge I have observed and experience in my country. Groundwater systems are particularly important in places where no rivers flows on the surface. In Yucatan, Mexico, for example, there are no rivers on the surface but we can find the Yucatán Peninsula Aquifer one of the biggest aquifers in the world. Today, the peninsula only has a population of 2 million, yet groundwater is being overexploited and polluted. In the peninsula, all socio-economic sectors rely directly or indirectly on groundwater. The main users – agriculture and industry – are causing high levels of pollution and severely overexploiting the cenotes. The quality of groundwater is also being affected by the construction of roads, buildings and other modifications that include pumping wells, infrastructure for tourism and the use of technology to extract and modify groundwater. In addition, warmer temperatures and increasingly unpredictable rainfall during the year are making it harder to store water. Another factor is that the large number of cenotes and lack of reliable hydrological data are making it difficult for users to monitor and control their usage of groundwater. Consequently, the population faces a greater risk to its groundwater reserves than is currently recognized. I would like use time–space evidence from the natural and social sciences for Earth information systems, but to find approaches to better integrate Indigenous knowledge and in situ observations from local communities that can be used to identify/estimate parameters that can support the management of aquifers.Y

Project / Mission / Initiative / Community Portal

Healthy Rivers for All Initiative

This website includes tools and resources for developing basin report cards. It includes reports that incorporate satellite imagery to measure environmental indicators and change over time.

With the University of Maryland Center for Environmental Science (UMCES), we are developing, packaging, and sharing a process that helps stakeholders create science-based report cards in their own basins with the right buy-in on-the-ground and credibility globally, so they can better manage resources for the protection of fresh water they depend upon.

Stakeholder

University of Stirling

The University of Stirling (www.stir.ac.uk) was founded by Royal Charter in 1967 as the first genuinely new university in Scotland for over 400 years and embraces its role as an innovative, intellectual and cultural institution. A research-led university with an international reputation for high-quality research directly relevant to society’s needs, Stirling aims to be at the forefront of research and learning that helps to improve lives.

Remote Sensing, GIS and Climatic Research Lab, University of the Punjab

The emerging demand of GIS and Space Applications for Climate Change studies for the socio-economic development of Pakistan along with Government of Pakistan Vision 2025, Space Vision 2047 of National Space Agency of Pakistan, and achievement of UN Sustainable Development Goals (SDGs) impelled the Higher Education Commission of Pakistan (HEC) to establish Remote Sensing, GIS and Climatic Research Lab (RSGCRL) at University of the Punjab, Lahore, Pakistan.

Water, Energy and Sustainability Research Center, Catholic University of Bolivia

The Center for Research on Water, Energy and Sustainability (CINAES for its name in Spanish) is a part of the Department of Engineering (Environmental Engineering) at the Universidad Catolica Boliviana (UCB), Bolivia. Since 2017, our focus is on scientific research, engineering in practice, engineering and science education, community outreach, public awareness and engagement.

Kenya Space Agency

The Kenya Space Agency (KSA) was established under the Ministry of Defence, as the successor to the National Space Secretariat (NSS), by Executive Order through Legal Notice No. 22 of 7th March 2017 with the mandate to promote, coordinate and regulate space related activities in the country.
Vision: The vision of the Agency is to be the premier Space Agency in promotion of access and effective utilization of Space Economy for national sustainable development.

University of Energy and Natural Resources

The University of Energy and Natural Resources (UENR) was established by an Act of Parliament, Act 830, 2011 on December 31, 2011. The University is a public funded national institution which seeks to provide leadership and management of energy and natural resources and be a centre of excellence in these critical areas.

Deltares

Deltares is an independent institute for applied research in the field of water, subsurface and infrastructure. Throughout the world, we work on smart solutions, innovations and applications for people, environment and society.

Center for Space Science and Geomatics Studies (CSSGS), Pashchimanchal Campus, Institute of Engineering (IOE), Tribhuvan University

The Center for Space Science and Geomatics Studies (CSSGS) is the research center with a focus on space science and geomatics applications in the following themes: disaster management, water quality, glacier, precision agriculture, air pollution, water pollution. Research areas also focus on the application of Global Navigation Satellite System (GNSS) in forestry, agriculture and engineering.

United Nations Office for Outer Space Affairs

The United Nations Office for Outer Space Affairs (UNOOSA) works to promote international cooperation in the peaceful use and exploration of space, and in the utilisation of space science and technology for sustainable economic and social development. The Office assists any United Nations Member States to establish legal and regulatory frameworks to govern space activities and strengthens the capacity of developing countries to use space science technology and applications for development by helping to integrate space capabilities into national development programmes.

GEO AquaWatch

AquaWatch is an Initiative within the Group on Earth Observations (GEO) that aims to develop and build the global capacity and utility of Earth Observation-derived water quality data, products and information to support water resources management and decision making.

Goal

The goal of the AquaWatch Initiative is to develop and build the global capacity and utility of Earth Observation-derived water quality data, products and information to support effective monitoring, management and decision making.

Objectives

The objectives to achieve this goal are:

Person

Photo of Dhalton Ventura

Dhalton L. T. Ventura

Water Resources Specialist National Water and Sanitation Agency of Brazil

Dhalton is a biologist, with a graduate certificate in environmental management and both a master’s degree and a Ph.D. in Ecology (University of Brasilia and University of Rio Grande do Norte, respectively). After working in the Amazonian Manatee Project as a research trainee and taking a course on Tropical Ecology and Conservation in Costa Rica, he joined the Brazilian National Water and Sanitation Agency (ANA) as a water resources specialist in 2006.

Photo of Shaima Almeer

Shaima Almeer

Senior Space Data Analyst National Space Science Agency

Shaima Almeer is a young Bahraini lady that works as a senior space data analyst at the National Space Science Agency. At NSSA she is responsible for acquiring data from satellite images and analyzing them into meaningful information aiming to serve more than 21 governmental entities. Shaima is also committed to publishing scientific research papers, aiming to support and spread the knowledge to others.

Software/Tool/(Web-)App

Bhuvan Ganga App

Bhuvan Ganga App is ISRO’s mobile application developed to enable public to collect and report information on various pollution sources that affects the water quality of river Ganga. This mobile app will provide a platform for crowd sourcing to monitor pollution in river Ganga and enable decision makers at National Mission for Cleaning Ganga (NMCG) under Ministry of Water Resources, River Development & Ganga Rejuvenation, Government of India to prioritize interventions.

Earth Observation Data Analysis Library

Imagery from Earth observing (EO) satellites combined with environmental data about climate, topography and soils holds great potential to advance our knowledge about the dynamics of our planet. Still, the handling and analysis of these data sources is cumbersome and presents a high barrier to entry leaving the potential of EO data underexploited.