6.1 By 2030, achieve universal and equitable access to safe and affordable drinking water for all

Graphic displaying access to safe and affordable drinking water

Related Content

Article

Interview with Dr Khalid Mahmood, Assistant Professor at the University of the Punjab

Could you describe your professional career and/or personal experiences related to space technology and water? Where does your interest in those sectors come from?

I started my research career in 2013, with research interests revolving around various environmental concerns that were deeply rooted in water related issues of Pakistan. Having an educational background in Space Science, it was quite intuitive to possess understanding of the very high potential of applicability of Geospatial technologies in the water sector.

Interview with Terefe Hanchiso Sodango, Assistant Professor at Wolkite University

Water scarcity and quality decline is a rapidly increasing challenges and becoming a top concern globally. To wisely manage water and achieve sustainable development, rapid and precise monitoring of water resources is crucial. Earth observation (EO) technologies play a key role in monitoring surface and underground water resources by providing rapid, continuous, high-quality, and low-cost EO data, products, and services. Currently, there are promising efforts in the use of EO technologies for water resource management but there are still huge gaps in the Africa region. The reason for the low utilization of EO technologies can be due to a lack of resources and funding including skilled and motivated human resources in the field and the lack of political commitment to foster EO products, data, and services. Therefore, the use of space technologies and their products to solve water-related problems needs collaborative efforts of all concerned stakeholders from global to local levels.

Hydro-diplomacy: The role of space-derived data in advancing water security

Water scarcity is one of the greatest threats faced by humanity of our time – in 2019, more than two billion people experience high water stress (UN-Water 2019) and approximately four billion people suffer from severe water scarcity for at least one month per year (Mekonnen and Hoekstra 2016). This worsening problem increases the risk of international conflict over water resources breaking out, given that there are over 270 transboundary river basins, and three-quarters of UN Member States share at least one river or lake basin with a neighbour (UN News 2017).

Interview with Dr Khalid Mahmood, Assistant Professor at the University of the Punjab

Could you describe your professional career and/or personal experiences related to space technology and water? Where does your interest in those sectors come from?

I started my research career in 2013, with research interests revolving around various environmental concerns that were deeply rooted in water related issues of Pakistan. Having an educational background in Space Science, it was quite intuitive to possess understanding of the very high potential of applicability of Geospatial technologies in the water sector.

Interview with Terefe Hanchiso Sodango, Assistant Professor at Wolkite University

Water scarcity and quality decline is a rapidly increasing challenges and becoming a top concern globally. To wisely manage water and achieve sustainable development, rapid and precise monitoring of water resources is crucial. Earth observation (EO) technologies play a key role in monitoring surface and underground water resources by providing rapid, continuous, high-quality, and low-cost EO data, products, and services. Currently, there are promising efforts in the use of EO technologies for water resource management but there are still huge gaps in the Africa region. The reason for the low utilization of EO technologies can be due to a lack of resources and funding including skilled and motivated human resources in the field and the lack of political commitment to foster EO products, data, and services. Therefore, the use of space technologies and their products to solve water-related problems needs collaborative efforts of all concerned stakeholders from global to local levels.

Interview with Amin Shakya, PhD Candidate at the University of Twente

We present an interview with Amin Shakya, a PhD candidate at the ITC Faculty of Geo-information science and earth observation at the University of Twente. We delve into Amin’s first engagements with geospatial technologies, his current PhD research on river discharge estimation using earth observation, as well as his prior work on groundwater analysis using space technologies. Further, Amin is engaged with the youth community particularly with the Groundwater Youth Network. We discuss his take on the role of youth in climate change adaptation. Throughout this interview, we touch upon various water challenges across the globe, from disaster risk management in Nepal, to urban water challenges in Mexico, to his current PhD research focused in Europe and in Africa.

Interview with Amin Shakya, PhD Candidate at the University of Twente

We present an interview with Amin Shakya, a PhD candidate at the ITC Faculty of Geo-information science and earth observation at the University of Twente. We delve into Amin’s first engagements with geospatial technologies, his current PhD research on river discharge estimation using earth observation, as well as his prior work on groundwater analysis using space technologies. Further, Amin is engaged with the youth community particularly with the Groundwater Youth Network. We discuss his take on the role of youth in climate change adaptation. Throughout this interview, we touch upon various water challenges across the globe, from disaster risk management in Nepal, to urban water challenges in Mexico, to his current PhD research focused in Europe and in Africa.

Local Perspectives Case Studies